Chemical Reaction Engineering Chapter 3

P3-10_A (a) Write the rate law for the following reactions assuming each reaction follows an elementary rate law.

$$C_2H_6 \longrightarrow C_2H_4 + H$$

(2)
$$C_2H_4 + \frac{1}{2}O_2 \rightarrow CH_2 - CH_2$$

(3)
$$(CH_3)_3COOC(CH_3)_3 \rightleftharpoons C_2H_6 + 2CH_3COCH_3$$

$$nC_4H_{10} \iff iC_4H_{10}$$

(5)
$$CH_3COOC_2H_5 + C_4H_9OH \rightleftharpoons CH_3COOC_4H_9 + C_2H_5OH$$

(b) Write the rate law for the reaction

$$2A + B \rightarrow C$$

if the reaction (1) is second order in B and overall third order, (2) is zero order in A and first order in B, (3) is zero order in both A and B, and (4) is first order in A and overall zero order.

- (c) Find and write the rate laws for the following reactions
 - (1) $H_2 + Br_2 \rightarrow 2HBr$
 - $(2) H₂ + I₂ \rightarrow 2HI$

P3-11_A Set up a stoichiometric table for each of the following reactions and express the concentration of each species in the reaction as a function of conversion

evaluating all constants (e.g., ε , Θ). Then, assume the reaction follows an elementary rate law, and write the reaction rate solely as a function of conversion, i.e., $-r_A = f(X)$.

(a) For the liquid-phase reaction

$$CH_2$$
—OH
 CH_2 — CH_2 + H_2O H_2SO_4 CH_2 —OH

the initial concentrations of ethylene oxide and water are 1 lb-mol/ft³ and 3.47 lb-mol/ft³ (62.41 lb/ft³ \div 18), respectively. If k=0.1 dm³/mol \cdot s at 300 K with E=12,500 cal/mol, calculate the space-time volume for 90% conversion at 300 K and at 350 K.

(b) For the isothermal, isobaric gas-phase pyrolysis

$$^{\cdot}C_2H_6 \longrightarrow C_2H_4 + H_2$$

pure ethane enters the flow reactor at 6 atm and 1100 K. How would your equation for the concentration and reaction rate change if the reaction were to be carried out in a constant-volume batch reactor?

(c) For the isothermal, isobaric, catalytic gas-phase oxidation

$$C_2H_4 + \frac{1}{2}O_2 \longrightarrow CH_2 - CH_3$$

the feed enters a PBR at 6 atm and 260°C and is a stoichiometric mixture of only oxygen and ethylene.

(d) For the isothermal, isobaric, catalytic gas-phase reaction is carried out in a PBR

the feed enters a PBR at 6 atm and 170°C and is a stoichiometric mixture. What catalyst weight is required to reach 80% conversion in a fluidized CSTR at 170°C and 270°C? The rate constant is defined wrt benzene and $v_0 = 50 \ \rm dm^3/min$.

$$k_{\rm B} = \frac{53 \text{ mol}}{\text{kgcat} \cdot \text{min atm}^3}$$
 at 300 K with $E = 80 \text{ kJ/mol}$

P3-13_B. The formation of nitroanalyine (an important intermediate in dyes—called fast orange) is formed from the reaction of orthonitrochlorobenzene (ONCB) and aqueous ammonia. (See Table 3-1 and Example 9-2.)

$$\begin{array}{c|c} \operatorname{NO_2} & \operatorname{NO_2} \\ & + 2\operatorname{NH_3} \end{array} + \operatorname{NH_2} \\ + \operatorname{NH_4CL} \end{array}$$

The liquid-phase reaction is first order in both ONCB and ammonia with k = 0.0017 m³/kmol min at 188°C with E = 11,273 cal/mol. The initial entering concentrations of ONCB and ammonia are 1.8 kmol/m³ and 6.6 kmol/m³, respectively (more on this reaction in Chapter 9).

- (a) Write the rate law for the rate of disappearance of ONCB in terms of concentration.
- (b) Set up a stoichiometric table for this reaction for a flow system.
- (c) Explain how part (a) would be different for a batch system.
- (d) Write $-r_{\Delta}$ solely as a function of conversion. $-r_{\Delta} =$
- (e) What is the initial rate of reaction (X = 0) at 188°C? $-r_A = \frac{1}{25}$ at 25°C? $-r_A = \frac{1}{25}$
- (f) What is the rate of reaction when X = 0.90 at $188^{\circ}C$? $-r_{A} =$ ______ at $25^{\circ}C$? $-r_{A} =$ _____ at $288^{\circ}C$? $-r_{A} =$ _____ at $288^{\circ}C$? $-r_{A} =$ _____
- (g) What would be the corresponding CSTR reactor volume at 25°C to achieve 90% conversion at 25°C and at 288°C for a molar feed rate of 2 mol/min

at 25°C?
$$V =$$

at 288°C? $V =$ _____

P3-15_B The gas-phase reaction

$$\frac{1}{2}N_2 + \frac{3}{5}H_2 \longrightarrow NH_3$$

is to be carried out isothermally. The molar feed is 50% $\rm H_2$ and 50% $\rm N_2$, at a pressure of 16.4 atm and 227°C.

- (a) Construct a complete stoichiometric table.
- (b) What are C_{AO}, δ, and ε? Calculate the concentrations of ammonia and hydrogen when the conversion of H₂ is 60%. (Ans. C_{H₂} = 0.1 mol/dm³)
- (c) Suppose by chance the reaction is elementary with k_{N2} = 40 dm³/mol/s. Write the rate of reaction solely as a function of conversion for (1) a flow system and (2) a constant volume batch system.
- P3-16_B Calculate the equilibrium conversion and concentrations for each of the following reactions.
 - (a) The liquid-phase reaction

$$A + B \longrightarrow C$$

with $C_{A0} = C_{B0} = 2 \text{ mol/dm}^3$ and $K_C = 10 \text{ dm}^3/\text{mol}$

(b) The gas-phase reaction

$$A \longrightarrow 3C$$

carried out in a flow reactor with no pressure drop. Pure A enters at a temperature of 400 K and 10 atm. At this temperature, $K_C = 0.25 (\text{dm}^3/\text{mol})^2$.

- (c) The gas-phase reaction in part (b) carried out in a constant-volume batch reactor.
- (d) The gas-phase reaction in part (b) carried out in a constant-pressure batch reaction.