Chemical Reaction Engineering Chapter 2. HW P2-4A, P2-7B

Example 2-1 Using the Ideal Gas Law to Calculate C_{A0} and F_{A0}

A gas of pure A at 830 kPa (8.2 atm) enters a reactor with a volumetric flow rate, v_0 , of 2 dm³/s at 500 K. Calculate the entering concentration of A, $C_{\rm A0}$, and the entering molar flow rate, $F_{\rm A0}$.

Example 2-2 Sizing a CSTR

The reaction described by the data in Table 2-2

 $A \rightarrow B$

is to be carried out in a CSTR. Species A enters the reactor at a molar flow rate of 0.4 mol/s.

- (a) Using the data in either Table 2-2, Table 2-3, or Figure 2-1, calculate the volume necessary to achieve 80% conversion in a CSTR.
- (b) Shade the area in Figure 2-2 that would give the CSTR volume necessary to achieve 80% conversion.

Table 2-2 Processed Data -1

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
$-r_{A}\left(\frac{\text{mol}}{\text{m}^{3}\cdot\text{s}}\right)$	0.45	0.37	0.30	0.195	0.113	0.079	0.05
$(1/-r_{\rm A})\left(\frac{{ m m}^3\cdot{ m s}}{{ m mol}}\right)$	2.22	2.70	3.33	5.13	8.85	12.7	20

- P2-4_A (a) Revisit Examples 2-1 through 2-3. How would your answers change if the flow rate, F_{A0}, were cut in half? If it were doubled?
 - (b) Example 2-5. How would your answers change if the two CSTRs (one 0.82 m³ and the other 3.2 m) were placed in parallel with the flow, F_{A0} , divided equally to each reactor.
 - (c) Example 2-6. How would your answer change if the PFRs were placed in parallel with the flow, F_{A0} , divided equally to each reactor?
 - (d) Example 2-7. (1) What would be the reactor volumes if the two intermediate conversions were changed to 20% and 50%, respectively. (2) What would be the conversions, X_1 , X_2 , and X_3 , if all the reactors had the same volume of 100 dm³ and were placed in the same order? (3) What is the worst possible way to arrange the two CSTRs and one PFR?

$P2-7_B$ The exothermic reaction

 $A \longrightarrow B + C$

was carried out adiabatically and the following data recorded:

X	0	0.2	0.4	0.45	0.5	0.6	0.8	0.9
$-r_{\rm A}$ (mol/dm ³ ·min)	1.0	1.67	5.0	5.0	5.0	5.0	1.25	0.91

The entering molar flow rate of A was 300 mol/min.

- (a) What are the PFR and CSTR volumes necessary to achieve 40% conversion? ($V_{PFR} = 72 \text{ dm}^3$, $V_{CSTR} = 24 \text{ dm}^3$)
- (b) Over what range of conversions would the CSTR and PFR reactor volumes be identical?
- (c) What is the maximum conversion that can be achieved in a 10.5-dm³ CSTR?
- (d) What conversion can be achieved if a 72-dm³ PFR is followed in series by a 24-dm³ CSTR?
- (e) What conversion can be achieved if a 24-dm³ CSTR is followed in a series by a 72-dm³ PFR?
- (f) Plot the conversion and rate of reaction as a function of PFR reactor volume up to a volume of 100 dm³.

 $P2-8_B$ In bioreactors, the growth is autocatalytic in that the more cells you have, the greater the growth rate

The cell growth rate, r_g , and the rate of nutrient consumption, r_s , are directly proportional to the concentration of cells for a given set of conditions. A

Levenspiel plot of $(1/-r_S)$, a function of nutrient conversion $X_S = (C_{S0} - C_S)/C_{S0}$ is given below in Figure P2-8.

Figure P2-8 Levenspiel plot for bacteria growth.

For a nutrient feed rate of 1kg/hr with $C_{S0} = 0.25$ g/dm³, what chemostat (CSTR) size is necessary to achieve.

- (a) 40% conversion of the substrate.
- (b) 80% conversion of the substrate.
- (c) What conversion could you achieve with an 80-dm³ CSTR? An 80-dm³ PFR?
- (d) How could you arrange a CSTR and PFR in series to achieve 80% conversion with the minimum total volume? Repeat for two CSTRs in series.
- (e) Show that Monod Equation for cell growth

$$-r_s = \frac{kC_S C_C}{K_M + C_S}$$

along with the stoichiometric relationship between the cell concentration, C_c , and the substrate concentration, C_s ,

$$C_C = Y_{C/S}[C_{S0} - C_S] + C_{c0} = 0.1[C_{S0} - C_S] + 0.001$$

is consistent with Figure P2-8_B.

P2-9_B The adiabatic exothermic irreversible gas-phase reaction

$$2A + B \longrightarrow 2C$$

is to be carried out in a flow reactor for an equimolar feed of A and B. A Levenspiel plot for this reaction is shown in Figure P2-9.

- (a) What PFR volume is necessary to achieve 50% conversion?
- (b) What CSTR volume is necessary to achieve 50% conversion?
- (c) What is the volume of a second CSTR added in series to the first CSTR (Part B) necessary to achieve an overall conversion of 80%?
- (d) What PFR volume must be added to the first CSTR (Part B) to raise the conversion to 80%?
- (e) What conversion can be achieved in a 6×10^4 m³ CSTR and also in a 6×10^4 m³ PFR?
- (f) Critique the shape of Figure P2-9 and the answers (numbers) to this

Figure P2-9 Levenspiel plot.