CONVERSION AND REACTOR SIZING

- Objectives:
- Define conversion and space time.
- Write the mole balances in terms of conversion for a batch reactor, CSTR, PFR, and PBR.
- Size reactors either alone or in series once given the molar flow rate of A, and the rate of reaction, $-r_{A}$, as a function of conversion, X.
- Conversion: Choose one of the reactants as the basis of calculation and relate the other species involved in the rxn to this basis.
- Space time: the time necessary to process one reactor volume of fluid based on entrance conditions (holding time or mean residence time)

CONVERSION AND REACTOR SIZING

1. Conversion

Consider the general equation

$$
a A+b B \rightarrow c C+d D
$$

We will choose A as our basis of calculation.

$$
A+\frac{b}{a} B \rightarrow \frac{c}{a} C+\frac{d}{a} D
$$

The basis of calculation is most always the limiting reactant. The conversion of species A in a reaction is equal to the number of moles of A reacted per mole of A fed.
$X=\frac{\stackrel{\text { Batch }}{\left(N_{A 0}-N_{A}\right)}}{N_{A 0}} \quad X=\frac{\stackrel{\left(F_{A 0}-F_{A}\right)}{F_{A 0}}}{F_{A l o w}}$
$X=\frac{\text { Moles of A reacted }}{\text { Moles of } A \text { fed }}$

For irreversible reactions, the maximum value of conversion, X, is that for complete conversion, i.e. $X=1.0$.

For reversible reactions, the maximum value of conversion, X, is the equilibrium conversion, i.e. $X=X$.

2. Design Equations

Batch Reactor Design Equations:

$$
\begin{align*}
{\left[\begin{array}{c}
\text { Moles of } A \\
\text { reacted } \\
\text { consumed })
\end{array}\right] } & =\left[\begin{array}{c}
\text { Moles of A } \\
\text { fed }
\end{array}\right] \cdot\left[\frac{\text { Moles of A reacted }}{\text { Moles of A fed }}\right] \\
& =\left[N_{A 0}\right] \quad \cdot[X] \tag{1}
\end{align*}
$$

Now the \# of moles of A that remain in the reactor after a time t, N_{A} can be expressed in terms of $\mathrm{N}_{\mathrm{A} 0}$ and X ;

$$
\begin{gather*}
{\left[N_{A}\right]=\left[N_{A 0}\right]-\left[N_{A 0} \cdot X\right]} \\
N_{A}=N_{A 0} \cdot(1-X) \tag{2}
\end{gather*}
$$

$$
\frac{d N_{A}}{d t}=r_{A} \cdot V \quad(\text { prefect mixing })
$$

$$
--\frac{d N_{A}}{d t}=-r_{A} \cdot V
$$

For batch reactors, we are interested in determining how long to leave the reactants in the reactor to achieve a certain conversion X .

$$
\begin{aligned}
\frac{d N_{A}}{d t} & =0-N_{A 0} \cdot \frac{d X}{d t} \quad\left(\text { Since } \mathrm{N}_{\mathrm{A} 0}\right. \text { is constant) } \\
\stackrel{-}{-} N_{A 0} \cdot \frac{d X}{d t} & =r_{A} \cdot V \\
N_{A 0} \cdot \frac{d X}{d t} & =-r_{A} \cdot V \quad
\end{aligned}
$$

For a constant volume batch reactor: $\left(\mathrm{V}=\mathrm{V}_{\mathbf{0}}\right)$

$$
\frac{1}{V_{0}} \cdot \frac{d N_{A}}{d t}=\frac{d\left(N_{A} / V_{0}\right)}{d t}=\frac{d C_{A}}{d t} \quad \text { From [3] }
$$

$$
\frac{d C_{A}}{d t}=r_{A}
$$

Constant volume batch reactor

$$
d t=N_{A 0} \cdot \frac{d X}{-r_{A} \cdot V}
$$

From [5]

$$
t=N_{A 0} \cdot \int_{0}^{X} \frac{d X}{-r_{A} \cdot V}
$$

Batch time, t , required to achieve a conversion X .

Ast»X

Flow Reactor Design Equations:

For continuous-flow systems, time usually increases with increasing reactor volume.

$$
F_{A 0} \cdot X=\frac{\text { moles of A fed }}{\text { time }} \cdot \frac{\text { moles of A reacted }}{\text { moles of A fed }}
$$

$$
\begin{aligned}
& F_{A}=F_{A 0} \cdot(1-X) \\
& F_{A 0}=\underbrace{C}_{A 0} \cdot \underbrace{v_{0}}_{\text {moles/volume }}
\end{aligned}
$$

For liquid systems, $\mathrm{C}_{\mathrm{A} 0}$ is usually given in terms of molarity (mol/dm3)
For gas systems, $\mathrm{C}_{\mathrm{A} 0}$ can be calculated using gas laws.

$$
C_{A 0}=\frac{P_{A 0}}{R \cdot T_{0}}=\frac{y_{A 0} \cdot P_{0}}{R \cdot T_{0}}
$$

Entering molar flow rate is

$$
F_{A 0}=v_{0} \cdot C_{A 0}=v_{0} \cdot \frac{y_{A 0} \cdot P_{0}}{R \cdot T_{0}} \quad \begin{array}{ll}
\mathbf{y}_{\mathrm{A} 0} & =\text { entering mole fraction of } \mathrm{A} \\
\mathbf{P}_{0} & =\text { entering total pressure }(\mathrm{kPa}) \\
\mathbf{C}_{\mathrm{A} 0} & =\text { entering conc'n }\left(\mathrm{mol} / \mathrm{dm}^{3}\right) \\
\mathbf{R} & =8.314 \mathrm{kPa} \mathrm{dm}^{3} / \mathrm{mol} \mathrm{~K} \\
\mathbf{T} & =\mathrm{T}(\mathrm{~K})
\end{array}
$$

CSTR (Design Equation)

For a rxn: $\quad A+\frac{b}{a} B \rightarrow \frac{c}{a} C+\frac{d}{a} D$

$$
V=\frac{F_{A 0}-F_{A}}{-r_{A}}
$$

Substitute for $\mathrm{F}_{\mathrm{A}} \quad F_{A}=F_{A 0}-F_{A 0} \cdot X$

$$
V=\frac{F_{A 0}-\left(F_{A 0}-F_{A 0} \cdot X\right)}{-r_{A}}
$$

$$
V=\frac{F_{A 0} \cdot X}{\left(-r_{A}\right)_{e x i t}}
$$

PFR (Design Equation)

$$
\begin{aligned}
& -\frac{d F_{A}}{d V}=-r_{A} \\
& F_{A}=F_{A 0}-F_{A 0} \cdot X \\
& d F_{A}=-F_{A 0} \cdot d X
\end{aligned}
$$

Substitute back:

$$
-\frac{d F_{A}}{d V}=F_{A 0} \cdot \frac{d X}{d V}=-r_{A}
$$

Seperate the variables $V=0$ when $X=0$

$$
V=F_{A 0} \cdot \int_{0}^{X} \frac{d X}{-r_{A}}
$$

Applications of Design Equations for Continuous Flow Reactors

3. Reactor Sizing

Given $-r_{A}$ as a function of conversion, $-r_{A}=f(X)$, one can size any type of reactor. We do this by constructing a Levenspiel Plot. Here we plot either $F_{A 0} /-r_{A}$ or $1 /-r_{A}$ as a function of X. For $F_{A 0} /-r_{A} v s$. X, the volume of a CSTR and the volume of a PFR can be represented as the shaded areas in the Levelspiel Plots shown below:

Levenspiel Plots

A particularly simple functional dependence is the first order dependence:

$$
\begin{aligned}
& -r_{A}=k \cdot C_{A}=k \cdot \underbrace{C_{A 0}} \cdot(1-X) \\
& \begin{array}{l}
\text { Specific rxn rate } \\
\text { (function of } \mathrm{T} \text {) }
\end{array} \\
& \text { initial conc'n }
\end{aligned}
$$

For this first order rxn, a plot of $1 /-r_{A}$ as a function of X yields :

$$
-\frac{1}{r_{A}}=\frac{1}{k \cdot C_{A 0}} \cdot\left(\frac{1}{1-X}\right)
$$

Example: Let's consider the isothermal gas-phase isomerization:

$\mathrm{A} \rightarrow \mathrm{B}$	
X	$-\mathrm{r}_{\mathrm{A}}\left(\mathrm{mol} / \mathrm{m}^{3} \mathrm{~s}\right)$
0	0.45
0.1	0.37
0.2	0.30
0.4	0.195
0.6	0.113
0.7	0.079
0.8	0.05
$[\mathrm{~T}=500 \mathrm{~K}]$	
$[\mathrm{P}=830 \mathrm{kPa}=8.2$ atm $]$	
initial charge was pure A	

Example: Let's consider the isothermal gas-phase isomerization:

$\mathrm{A} \rightarrow \mathrm{B}$		
X	$-\mathrm{r}_{\mathrm{A}}\left(\mathrm{mol} / \mathrm{m}^{3} \mathrm{~s}\right)$	$1 /-\mathrm{r}_{\mathrm{A}}$
0	0.45	2.22
0.1	0.37	2.70
0.2	0.30	3.33
0.4	0.195	5.13
0.6	0.113	8.85
0.7	0.079	12.7
0.8	0.05	20.0

$$
[\mathrm{T}=500 \mathrm{~K}]
$$

$$
[\mathrm{P}=830 \mathrm{kPa}=8.2 \mathrm{~atm}]
$$

initial charge was pure A

Draw -1/rin \mathbf{r} X:

We can use this figure to size flow reactors for different entering molar flow rates.

Keep in mind :

1. if a rxn is carried out isothermally, the rate is usually greatest at the start of the rxn, when the conc'n of reactant is greatest. (when $x \approx$ $0 \rightarrow-1 / r_{A}$ is small)
2. As $x \rightarrow 1,-r_{A} \rightarrow 0$ thus $1 /-r_{\mathrm{A}} \rightarrow \infty \& \vee \rightarrow \infty$
\rightarrow An infinite reactor volume is needed to reach complete conversion.
For reversible reactions ($A \leftrightarrow B$), the max X is the equilibrium conversion X_{e}. At equilibrium, $\mathrm{r}_{\mathrm{A}} \approx 0$.

As $\mathrm{X} \rightarrow \mathrm{X}_{\mathrm{e}},-\mathrm{r}_{\mathrm{A}} \rightarrow 0$ thus $1 /-\mathrm{r}_{\mathrm{A}} \rightarrow \infty \& \mathrm{~V} \rightarrow \infty$
\rightarrow An infinite reactor volume is needed to obtain X_{e}.
if $\mathrm{F}_{\mathrm{A} 0}=0.4 \mathrm{~mol} / \mathrm{s}$, we can calculate $\left[\mathrm{F}_{\mathrm{A}} /-\mathrm{r}_{\mathrm{A}}\right](\mathrm{m} 3)$
Plot $\mathrm{F}_{\mathrm{A} O} /-\mathrm{r}_{\mathrm{A}}$ vs X obtain Levenspiel Plot!
Example: Calculate volume to achieve 80 \% conversion in CSTR.

$$
\text { find }-r_{A} \text { at } X=0.8
$$

$$
\left(-\frac{1}{r_{A}}\right)_{0.8}=20 \frac{\mathrm{~m}^{3}}{\mathrm{~mol} \cdot \mathrm{~s}}
$$

$$
V=\frac{F_{A 0} \cdot X}{\left(-r_{A}\right)_{e x i t}}
$$

For instance:

$$
=0.4 \frac{\mathrm{~mol}}{\mathrm{~s}} \cdot 20 \frac{\mathrm{~m}^{3}}{\mathrm{~mol} \cdot \mathrm{~s}} \cdot 0.8=6.4 \mathrm{~m}^{3}
$$

$3.6 \mathrm{~m}^{3}$
CSTRs are usually used for liquid-phase rxns.

4. Numerical Evaluation of Intergrals

The integral to calculate the PFR volume can be evaluated using a method such as Simpson's One-Third Rule.

NOTE: The intervals (ΔX) shown in the sketch are not drawn to scale. They should be equal.

Simpson's One-Third Rule is one of the most common numerical methods. It uses three data points. One numerical methods for evaluating integrals are:

1. Trapezoidal Rule (uses two data points)
2. Simpson's Three-Eighth's Rule (uses four data points)
3. Five-Point Quadrature Formula

Trapezoidal Rule

$$
\begin{aligned}
\int_{x_{0}}^{x_{1}} f(x) \cdot d x & =\frac{1}{h}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right] \\
A_{1} & =f\left(x_{0}\right) \cdot h \\
A_{2} & =\frac{\left[f\left(x_{1}\right)-f\left(x_{0}\right)\right] \cdot h}{2} \\
A & =A_{1}+A_{2} \\
& =h \cdot\left[f\left(x_{0}\right)+\frac{f\left(x_{1}\right)}{2}-\frac{f\left(x_{0}\right)}{2}\right] \\
& =\frac{h}{2} \cdot\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]
\end{aligned}
$$

Five Point Quadrature formula:
$\int_{x_{0}}^{x_{4}} f(x) \cdot d x=\frac{h}{3} \cdot\left(f_{0}+4 f_{1}+2 f_{2}+4 f_{3}+f_{4}\right)$ where $h=\frac{x_{4}-x_{0}}{4}$
$\int_{x_{0}}^{x_{N}} f(x) \cdot d x=\frac{3 h}{8} \cdot\left(f_{0}+3 f_{1}+3 f_{2}+2 f_{3}+3 f_{4}+3 f_{5}+2 f_{6} \ldots ..\right) \Longrightarrow \mathrm{F}$ is an integer.

Example: Consider the liquid phase reaction;

$$
\mathrm{A} \rightarrow \text { Products }
$$

which is to take place in a PFR. The following data was obtained in a batch reactor.

X	0	0.4	0.8
$-r_{A}\left(\mathrm{~mol} / \mathrm{dm}^{3} \mathrm{~s}\right)$	0.01	0.008	0.002

If the molar feed of A to the PFR is $2 \mathrm{~mol} / \mathrm{s}$, what PFR volume is necessary to achieve 80 \% conversion under identical conditions as those under which the batch data was obtained?

Hint:

$\mathrm{F}_{\mathrm{A} 0}=2 \mathrm{~mol} / \mathrm{s}$, fed to a plug flow reactor
PFR $\therefore V=F_{A 0} \int_{0}^{X} \frac{1}{-r_{A}} d X \quad$ Thus one needs $\left(1 /-r_{A}\right)$ as a function of X.

For Simpson's three point formula we have:

PFR: $V=F_{A 0} \int_{0}^{X} \frac{d X}{-r_{A}}=F_{A 0} \cdot \frac{\Delta X}{3}\left[\frac{1}{-r_{A}(X=0)}+\frac{4}{-r_{A}\left(X_{1}\right)}+\frac{1}{-r_{A}\left(X_{2}\right)}\right]$
$P F R: V=F_{A 0} \int_{0}^{0.8} \frac{d X}{-r_{\mathrm{A}}}=2 \frac{\mathrm{~mol}}{\mathrm{~s}} \cdot\left\{\frac{0.4}{3}[100+4 \cdot(125)+500] \frac{\mathrm{dm}^{3} \mathrm{~s}}{\mathrm{~mol}}\right\}=293 \mathrm{dm}^{3}$

To reach 80 \% conversion, your PFR must be $293.3 \mathrm{dm}^{3}$.

Sizing in PFR

Example: Determine the volume in PFR to achieve a 80% conversion.

$$
\begin{aligned}
& \text { For } P F R: F_{A 0} \cdot \frac{d X}{d V}=-r_{A} \\
& \text { Re arranging }: V=F_{A 0} \cdot \int_{0}^{0.8} \frac{d X}{-r_{A}}=\int_{0}^{0.8} \frac{F_{A 0}}{-r_{A}} \cdot d X
\end{aligned}
$$

Let's numerically evaluate the integral with trapezoidal rule

$$
\begin{array}{r}
\int_{0}^{0.8} \frac{F_{A 0}}{-r_{A}} \cdot d X \Rightarrow f(X)=\left.\frac{F_{A 0}}{-r_{A}}\right|_{X=0}=0.89 \\
f(X)=\left.\frac{F_{A 0}}{-r_{A}}\right|_{X=0.8}=8.0
\end{array}
$$

$V=\frac{0.8}{2} \cdot(0.89+8.0)=8.89 \cdot 0.4=3.556 \mathrm{~m}^{3}$
With five point quadrature $V=2.165 \mathrm{~m}^{3}$

Comparing CSTR \& PFR Sizing

$V_{\text {CSTR }}>V_{\text {PFR }}$ for the same conversion and rxn conditions.
The reason is that CSTR always operates at lowest rxn rate. PFR starts at a high rate, then gradually decreases to the exit rate.

Reactors in Series: The exit of one reactor is fed to the next one.

Given $-r_{A}$ as a function of conversion, one can design any sequence of reactors.

$$
X_{i}=\frac{\text { moles of A reacted up to point } i}{\text { moles of A fed to first reactor }}
$$

Only valid if there are no side streams.

$$
F_{A i}=F_{A 0}-F_{A 0} \cdot X_{i}
$$

Example: Using Levenspiel plots to calculate conversion from known reactor volumes.

Pure A is fed at a volumetric flow rate $1000 \mathrm{dm}^{3} / \mathrm{h}$ and at a concentration of 0.005 $\mathrm{mol} / \mathrm{dm}^{3}$ to an existing CSTR, which is connected in series to an existing tubular reactor. If the volume of the CSTR is $1200 \mathrm{dm}^{3}$ and the tubular reactor volume is $600 \mathrm{dm}^{3}$, what are the intermediate and final conversions that can be achieved with the existing system? The reciprocal rate is plotted in the figure below as a function of conversion for the conditions at which the reaction is to be carried out.

Solution:

By trial and error, we find that a conversion of 0.6 gives the appropriate CSTR volume of $1200 \mathrm{dm}^{3}$.

Therefore, the intermediate conversion is $X=0.6$

Similarly for the PFR, through trial and error, we find that a conversion of 0.8 gives the appropriate PFR volume of $600 \mathrm{dm}^{3}$.

Therefore, the final conversion is $X=0.8$

CSTRs in Series

Two CSTRs in series

Reactor 1:

Mole Balance: $\mathrm{F}_{\mathrm{A} 0}-\mathrm{F}_{\mathrm{A} 1}+\mathrm{r}_{\mathrm{A} 1} \mathrm{~V}_{1}=0 \quad$ [1]

$$
\mathrm{F}_{\mathrm{A} 1}=\mathrm{F}_{\mathrm{A} 0}-\mathrm{F}_{\mathrm{A} 0} \mathrm{X}_{1}
$$

Combining [1] \& [2]:

$$
\begin{equation*}
V_{1}=F_{A 0}\left(1 /-r_{A_{1}}\right) X_{1} \tag{3}
\end{equation*}
$$

Reactor 2 :

Mole Balance: $\mathrm{F}_{\mathrm{A} 1}-\mathrm{F}_{\mathrm{A} 2}+\mathrm{r}_{\mathrm{A} 2} \mathrm{~V}_{2}=0$

$$
\begin{equation*}
\mathrm{F}_{\mathrm{A} 2}=\mathrm{F}_{\mathrm{A} 0}-\mathrm{F}_{\mathrm{A} 0} \mathrm{X}_{2} \tag{4}
\end{equation*}
$$

Combining [4] \& [5]:

$$
V_{2}=\frac{F_{A 1}-F_{A 2}}{-r_{A 2}}=\frac{\left(F_{A 0}-F_{A 0} \cdot X_{1}\right)-\left(F_{A 0}-F_{A 0} \cdot X_{2}\right)}{-r_{A 2}}=\frac{F_{A 0}}{-r_{A 2}}\left(X_{2}-X_{1}\right)
$$

if we have the data:
$X=0.4 \quad\left(\frac{F_{A 0}}{-r_{A 1}}\right)_{X=0.4}=2.05 m^{3} \quad V_{1}=\left(\frac{F_{A 0}}{-r_{A 1}}\right)_{0.4} \cdot X_{1}=0.82 \mathrm{~m}^{3}$
$X=0.8 \quad\left(\frac{F_{A 0}}{-r_{A 2}}\right)_{X=0.8}=8.0 m^{3} \quad V_{2}=\left(\frac{F_{A 0}}{-r_{A 2}}\right) \cdot\left(X_{2}-X_{1}\right)=3.2 m^{3}$

$$
\mathrm{V}_{\mathrm{CSTR}, 2}>\mathrm{V}_{\mathrm{CSTR}, 1}
$$

Total $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}=4.02 \mathrm{~m}^{3}<6.4 \mathrm{~m}^{3} \Longrightarrow \begin{aligned} & \text { volume necessary to get } 80 \% \\ & \text { conversion with one CSTR }\end{aligned}$

One can approximate a PFR by a large \# of CSTRs in series:

PFRs in Series

$\int_{0}^{X_{2}} F_{A 0} \cdot \frac{d X}{-r_{A}}=\int_{0}^{X_{1}} F_{A 0} \cdot \frac{d X}{-r_{A}}+\int_{X_{1}}^{X_{2}} F_{A 0} \cdot \frac{d X}{-r_{A}}$

$$
V_{P F R}=\sum_{i=1}^{n} V_{C S T R, i}
$$

$\mathrm{V}_{\mathrm{TOTAL}}=\mathrm{V}_{\mathrm{PFR}, 1}+\mathrm{V}_{\mathrm{PFR}, 2}$
The overall conversion of two PFRs in series is the same as one PFR with the same total volume

Reactors in Series: CSTR - PFR - CSTR

Using the data in the table, calculate the reactor volumes V_{1}, V_{2} and V_{3} for the CSTR/PFR/CSTR reactors in series sequence along with the corresponding conversion.

Use the plot of $\left(\frac{F_{A 0}}{-r_{A}}\right)$ vs. X

(a) The CSTR design equation for Reactor 1 is:

$$
V_{1}=\left(\frac{F_{A 0} \cdot X}{-r_{A 1}}\right)
$$

at $X=X_{1}=0.4$ the $\left(F_{A 0} /-r_{A_{1}}\right)=300 \mathrm{dm}^{3}$
$V_{1}=\left(300 \mathrm{dm}^{3}\right)(0.4)=120 \mathrm{dm}^{3}$
The volume of the first CSTR is $120 \mathrm{dm}^{3}$
(b) Reactor 2: PFR The differential form of the PFR design is

$$
\frac{d X}{d V}=\frac{-r_{A}}{F_{A 0}}
$$

Rearranging and intergrating with limits

$$
\begin{array}{ll}
\text { when } V=0 & X=X_{1}=0.4 \\
\text { when } V=V_{2} & X=X_{2}=0.7
\end{array}
$$

$$
V=\int_{X_{1}}^{X_{2}}\left(\frac{F_{A 0}}{-r_{A}}\right) \cdot d X=\int_{0.4}^{0.7}\left(\frac{F_{A 0}}{-r_{A}}\right) \cdot d X
$$

Choose three point quadrature formula with

$$
\begin{gathered}
\Delta X=\frac{X_{2}-X_{1}}{2}=\frac{0.7-0.4}{2}=0.15 \\
V_{2}=\frac{\Delta X}{3}\left[\frac{F_{A 0}}{-r_{A}(0.4)}+\frac{4 \cdot F_{A 0}}{-r_{A}(0.55)}+\frac{F_{A 0}}{-r_{A}(0.7)}\right]
\end{gathered}
$$

Interpreting for $\left(\mathrm{F}_{\mathrm{A} 0} /-\mathrm{r}_{\mathrm{A}}\right)$ at $\mathrm{X}=0.55$ we obtain

$$
\begin{gathered}
\left(\frac{F_{A 0}}{-r_{A}}\right)_{X=0.55}=370 \mathrm{dm}^{3} \\
V_{2}=\frac{0.15}{3}\left[300 \mathrm{dm}^{3}+4 \cdot\left(370 \mathrm{dm}^{3}\right)+600 \mathrm{dm}^{3}\right]=119 \mathrm{dm}^{3}
\end{gathered}
$$

The volume of the PFR is $\mathrm{V}_{2}=119 \mathrm{dm}^{3}$
(c) Reactor 3: CSTR

Balance	in - out + generation
$F_{A 2}-F_{A 3}+r_{A 3} \cdot V_{3}=0$	
	$V_{3}=\frac{F_{A 2}-F_{A 3}}{-r_{A 3}}$

$F_{A 2}=F_{A 0} \cdot\left(1-X_{2}\right)$
$F_{A 3}=F_{A 0} \cdot\left(1-X_{3}\right)$
$V_{3}=\frac{F_{A 0}}{-r_{A 3}} \cdot\left(X_{3}-X_{2}\right)$
$V_{3}=600 \mathrm{dm}^{3} \cdot(0.7-0.4)=180 \mathrm{dm}^{3}$
The volume of last CSTR is $180 \mathrm{dm}^{3}$

```
Summary:
CSTR X X = 0.4 V V = 120 dm
PFR X X = 0.7 V
CSTR X X = 0.8 V V = 180 dm
```

Total volume $=120+119+180=419 \mathrm{dm}^{3}$

Reactor Sequencing

Is there any differences between having a CSTR - PFR system \& PFR CSTR system? Which arrangement is best?

or

The volumes are different!
$\mathrm{V}_{1}+\mathrm{V}_{2}=$? $\mathrm{V}_{3}+\mathrm{V}_{4}$

For isothermal rxns

The choice of reactors depend on ; the Levenspiel plots relative reactor sizes

Space Time

The space time, tau, is obtained by dividing the reactor volume by the volumetric flow rate entering the reactor:

$$
\tau=\frac{V}{v_{0}}
$$

Space time is the time necessary to process one volume of reactor fluid at the entrance conditions. This is the time it takes for the amount of fluid that takes up the entire volume of the reactor to either completely enter or completely exit the reactor. It is also called holding time or mean residence time.

Example: $\mathrm{v}_{0}=0.01 \mathrm{~m}^{3} / \mathrm{s}$ and $\mathrm{V}=0.2 \mathrm{~m}^{3} \rightarrow \mathrm{~T}=0.2 \mathrm{~m}^{3} / 0.01 \mathrm{~m}^{3} / \mathrm{s}=20 \mathrm{~s}$ It would take 20 s for the fluid at the entrance to move to the exit.

Typical space time for different reactors:
Batch : $15 \mathrm{~min}-20 \mathrm{~h}$ (few kg/day $-100,000$ tons/year ≈ 280 tons/day)
CSTR : $10 \mathrm{~min}-4 \mathrm{~h} \quad\left(10\right.$ to 3×10^{6} tons/yr)
Tubular: $0.5 \mathrm{~s}-1 \mathrm{~h} \quad$ (50 to 5×10^{6} tons/yr)

Space Velocity (SV) is defined as:

$$
S V=\frac{v_{0}}{V}=\frac{1}{\tau}
$$

instead of using volumetric flow rate at the entrance, you use liquid hourly \& gas - hourly space velocities (LHSV, GHSV).
v_{0} (for LHSV) is that of a liquid feed rate at $60^{\circ} \mathrm{F}$ or $75^{\circ} \mathrm{F}$.
v_{0} (for GHSV) is that of the one that measured at STP.

$$
L H S V=\frac{\left.v_{0}\right|_{\text {liq }}}{V} \quad G H S V=\frac{\left.v_{0}\right|_{\text {STP }}}{V}
$$

	Reaction	Reactor	Temperature	Pressure atm	Space Time
(1)	$\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$	PFR	$860^{\circ} \mathrm{C}$	2	1 s
(2)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{HCH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$	CSTR	$100^{\circ} \mathrm{C}$	1	2 h
(3)	Catalytic cracking	PBR	$490^{\circ} \mathrm{C}$	20	$1 \mathrm{~s}<\mathrm{T}<400 \mathrm{~s}$
(4)	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2}$	PBR	$600{ }^{\circ} \mathrm{C}$	1	0.2 s
(5)	$\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}$	PBR	$300{ }^{\circ} \mathrm{C}$	26	4.5 s
(6)	$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$	CSTR	$50^{\circ} \mathrm{C}$	1	20 min

- HW (due date: Feb 25):
- Solve the prpblem in your own way.
- http://www.engin.umich.edu/~cre/web mod/hippo/index.htm
- Suggested problems from the web:
- http://www.engin.umich.edu/~cre/
- Additional Homework Problems at each chapter

Assumption:
Penicillin is produced in the stationary state.
\rightarrow no cell growth \& nutrients are used in making the product.

Mass balance for penicillin: In - Out + Generation $=$ Accumulati on

$$
\begin{aligned}
& F_{\text {in }}+F_{\text {out }}+G_{p}=\frac{d N_{p}}{d t} \\
& F_{\text {in }}=0(\text { no penicilin in_flow }) \\
& G_{p}=\int^{V} r_{p} \cdot d V \Rightarrow \int^{V} r_{p} \cdot d V-F_{\text {out }}=\frac{d N_{p}}{d t}
\end{aligned}
$$

Assuming steady state for the rate of production of penicilin in the cells stationary state,

$$
\begin{aligned}
& \frac{d N_{p}}{d t}=0 \\
& V=\frac{F_{\text {in }}-F_{\text {out }}}{-r_{p}} \Rightarrow V=\frac{F_{\text {out }}}{r_{p}}
\end{aligned}
$$

Similarity, for Corn Steep Liquor with $\mathrm{F}_{\mathrm{C}}=0$

$$
V=\frac{F_{C 0}-F_{C}}{-r_{C}}=\frac{F_{C 0}}{-r_{C}}
$$

No RNA is generated or destroyed.

©̧ummary

Batch

Flow
$X=\frac{\left(N_{A 0}-N_{A}\right)}{N_{A 0}}$
$X=\frac{\left(F_{A 0}-F_{A}\right)}{F_{A 0}}$

$$
X=\text { Moles of } A \text { reacted }
$$

Moles of A fed

For irreversible reactions, the maximum value of conversion, X, is that for complete conversion, i.e. $X=1.0$.

For reversible reactions, the maximum value of conversion, X, is the equilibrium conversion, i.e. $X=X_{e}$.

$$
\begin{aligned}
& N_{A 0} \cdot \frac{d X}{d t}=-r_{A} \cdot V \quad \begin{array}{l}
\text { Batch reactor design eq'n } \\
\text { (indifferentialform) }
\end{array} \\
& V=\frac{F_{A 0} \cdot X}{\left(-r_{A}\right)_{\text {exit }}} \quad \operatorname{Gog} \delta \\
& V=F_{A 0} \cdot \int_{0}^{X} \frac{d X}{-r_{A}} \quad \mathscr{P F} \not \mathscr{F}_{\varnothing}
\end{aligned}
$$

$\mathscr{R e}_{\text {eactors in series }}$

O-gace time $\quad \tau=\frac{V}{v_{0}}$

