Chapter 5

Collection & Analysis of Rate Data

There are some basic steps in Analysis of Rate Data
1. Postulate a rate law:
a) Power law model for homogeneous rxns:
~r,=k-C,“-C,”
b) Langmuir — Hinshelwood for heterogeneous rxns:
. k-P,-Py
@+ K, P +P)?
2. Select reactor type; i.e.; Batch, CSTR, PFR, PBR......

3. Process your data in term of measured variables (N,, C, or P,)

4. Do simplifications (assumptions), if —r, = k C,Cg and C,>>Cg
—-r, =k Cg

5. For batch reactors, find reaction order
i. Find (- dCA/dt) from CA vs t data.

Take Lin.

Find the order of rxn by tn (-dC,/dt)=lnk+ aln C,

Find the rate constant, k.

ii. Integral Form:

Gy e
dt
Integrate

6. For PBR, find —r,” as a function of C, or P,.




SUMMARY

Differential Method:

—d;A:kA-CA“ In(—d;:t‘\J:InkA+ozInCA
slope =« kA:W
AP

InC,,
we should differentiate the concentration-time oata either

graphically or numerically.
1. Graphical differentiation
2. Numerical differentiation formula

2. Differentiation of a polynomdial fit to the data.

1. Graphical
Tabulate (C,, t;)) observations and for each interval calculate

ACn = Cn - Cn-1 Atn = tn - tn-‘l

g o At AC, AC,/ At (dC, / dt)

t—-t, C,—C,  (AC4 At),

t, C, } (dC, / dt),
t,—t, C,—C,  (ACAt),

t, C, (dC, / dt),
t,—t, C,—C,  (AC,/ A,




Plot these values as a histogram
Draw a smooth curve

Read estimates of (dC,/dt) at t,, t,,

-% AX =X, — X4
Ay = Yn— Y1
Plot these
t
n
y
AC, y = _— .
~H ' Z;' Ax
Y Xy dy
dtJD % Y, — VY, = Jd— dx
B Xp
_ G, - :_
dt Jt1 € Try to find
dg,
—d—tAJt Al Eal ok Area(A) = Area(B)
0 il ta A+C=B+D

Numerical Methods
If the data points are equally spaced, i.e., t, —t, =t, - t, = At

time (min) ty t, t

Conc’n (mol/dm3) Cpro Cas Cao

For initial point (dCA) :_BCA0+4CA1_CA2
dt ), 2At

0

L . dC 1
interior point ( th) = E [CA(i+l) - CA(i—l)]

. dC 1
End point ( th ln = E[CA(n—Z) _4CA(n—l) +CA(n)]

Polynomial fit:

Fit the conc’n — time data to an nt" order polynomial as:
C,=a,+at+a,t’ +a,t®+a,t*....at"

Find best values for {a - P DA , an}

d;:t =a, +2a,t+3a,t° +...na, t"




Integral Method

We first guess the rxn order and integrate the differential equation used to
model the batch system. If the order is correct, the plot of conc’n time data
should be linear.

This method is used when rxn order is known but E, and k, are unknown.

Becond Order,«=2

Zero Order,«=0 First Order,ce= 1
slope = -k C 1
Ca m[—m] c .
Ca slope =k & slope =k
t t T
dCa 2
dCs dCa =1, = —kC =ry = KCji

att=0, Cy =Cag

C = -
= Cp =Cpy -k :In(ci:'}m Ca Coag

Non — Linear Regression

Non — Linear Least-Square Analysis

We want to find the parameter values (alpha, k, E) for which the sum of
the squares of the differences, the measured rate (r,,), and the calculated
rate (r.) is @ minimum.

(r —r _)2 # of parameters to be determined
mi cl

N—K/
W

That is we want =* to be a minimum.
For concentration-time data, we can integrate the mole balance equation

for -r, = k C,aP"a to obtain

o -

Tk

# of runs

S 2((:”,“ e - (- akt }””f

N N
s? = 2 [.cAmi - cAci)
=1




We find the values of alpha and k which minimize S2

dc,
dt
k-dt=dcC,-C,™

k-t =1LCA“ +Const

=k-C,”

l-a

Const = _Cuo
-

C,=%4/C,, " —(l-a)k-t

Vary a and k, obtain S2 (or use a search technique)

S(a’, k') is @ minimum (optimization methods)

Concentration vs Time Equations for the proposed rate equations can be
done by differential or integration method.

Ex.: Liquid phase rxn btw trimethylamine(A) and n-propyl bromide (B)
was studied by Winkler & Hinshelwood. The results at 139.4°C are
shown below. Initial sol'ns of A & B in benzene, 0.2 molal, were mixed
and placed in constant temperature bath. After certain times, they were
cooled to stop the rxn. Determine the first order and second order
specificrates, k, and k,, asssuming the rxn is irreversible. Use integration
& differential methods.

Run t, min X (%)
1 13 11.2
2 34 25.7
3 59 36.7
4 120 556.2




Sol'n:
A+B—>C*+D 1% order
Volume is constant

dc,

:kl'CA

_rA:

2" order -r, :%:kZ-CA-CB

Integration Method
1% order
-In Ca_ k,-t [1]
A0
2" order
Stoichiometric coefficients are equal and C ,, =C, = 0.1 molal
dC,
ot

:kz'CAZ

CAO_CA
CAO
For the first run C,=0.1-.0.888
Substitute in [1]
klzl-ln Cro_ 1 13 91 45004
t C, 13.60 0.0888
Substitute in [2]

K, = (L_lj: 0.112 _163x10° — =
t-Cp \1-x (13-60)-0.1-(1—0.112) gmol -s

X = CA:CAO(]'_X)

If you repeat for four of the runs:

Run t, sec k, x 10 (s") | k, x 10-3 (L/mol s) Cp
1 780 1.54 1.63 0.0112
2 2040 1.46 1.70 0.0257
3 3540 1.30 1.64 0.0367
4 7200 1.12 1.71 0.0552
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So, itis SECOND ORDER

Differential Method
Cp = C,— C, (moles of D produced = moles of A reacted)
Cp=xCy

A plot ofCDvs t
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Slopes determined from the curve are given as follows

Cp (O r = dCp/dt (105 gmol/L)

0.0 0.10 1.58

0.01 0.09 1.38

0.02 0.08 1.14

0.03 0.07 0.79

0.04 0.06 0.64

0.05 0.05 0.45
log ry = log k; +log C, (from —r, = k; C,)
log ry = log k, + log C,2 =log k, + 2 log C, (from —r, = k, C,?)

1t log r vs log C, should yield a straight line with a slope of 1.0.

27d: log r vs log C, should yield a straight line with a slope of 2.0.

logr=-2.76 +2.0log C,

The data suggest a slope of 2!
log k, =-2.76
k,=1.73x103L/ mol s

slope = 2.0

logr

log CA




Another Way (Batch Reactor Data)
B + A — products

-ry = k, C,9CgP if a and B are both unknown, the rxn could be run in an
excess of B so that Cg remains essentially unchanged

-r, =k'C,”* wherek' =k ,,C.” ~k,C,,”
In determining «, the rxn is carried (excess of A)

-1, =k"C.” wherek'" =k ,C,* ~k,C,,”

Solving with search

4

5= 3 (Cony e -yt )

i=1

t Co C,
780 0.0112 0.0888
2040 0.0257 0.0743
3540 0.0367 0.0633
7200 0.0552 0.0448

n —a 2
g2 — Z(CAm,i _ abS[CAOl_a -(1-a)k -t ]l/l ) fminsearch

i=1




Method of Initial Rates

If there is a reverse rxn, it could render the differential method ineffective.
In these cases, initial rates could be used for k & a.

Carry out a series of experiments with different CAO.
Determine —rAOQ for each run.
-rA0=k CAOa — In(-rA0) vs In(CAO)

Instead of doing at different time steps, repeat the rxn.

Method of Half Lives:

The half life of a rxn, t,,, is defined as the ime it takes for the concentration
of the reactant to fall to half of its initial value.

If you know t,,, find k & a.

If there are more than 1 reactant, use method of excess.

-r,=k-C,” (A — products )
dC a
—TA:—I'A :k'CA

@t=0 C,=C, @t=ty, Ca=35Chn

1 1 1
t = a-1 - a-1
k(e -1)\ C, C o
a-1
{ = 1 CAO _1
k(a-1)(\ C,
pet_1( 1\
t, =
k(e -1)| C,,

a-1_ a-1
Similarly t,, = :(a _11) (Cl ]
AQ
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Int,,
et _ slope=1-«
Int,,=In————+(1-a)InC,,

(a -1k

InC,,
Differential Reactors

A differential reactor is used to determine the rate of a rxn as a function of
either concentration or partial pressure

FAO FA O 8 OO

e

AL

Conversion is very small in bed
C, is constant = C,, (gradientless)
Rxn rate is uniform

(almost isothermal)

Design Equation is similar to a CSTR:

Rate of rxn
Fr — Fp +——(massof cat) =0
A% massof cat ( )
Fro—Fae 14" AW=0
r'= FAO — FAe
= A0 fe
AW
v,C,,—Vv:-C .
r,'=—2-2%——%¢ (in termsof conc'n)
AW
Fup'X Foo
ry'= TaoX_ T (in terms of flow rate)
AW AW
re Vo(Cro=Che) _ v (Cp)
A AW AW
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Deviations from Ideal Reactors

When the mixing criteria of ideal reactors are not satisfied,
mathematical expressions for the conservation equations become more

difficult.
‘ %/v

- 5 ~

-

Deviations from ideal stirred — tank reactors
a) Stagnant regions

b) by — passing

Deviations from tubular-flow
a) Longtidunal mixing due to vortices and turbulence
b) Laminar flow (poor radial mixing)

c) By-passing in fixed-bed catalytic reactor.
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