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There are some basic steps in Analysis of Rate Data

1. Postulate a rate law: 

a) Power law model for homogeneous rxns:

b) Langmuir – Hinshelwood for heterogeneous rxns:

2. Select reactor type; i.e.; Batch, CSTR, PFR, PBR......

3. Process your data in term of measured variables (NA, CA or PA)

4. Do simplifications (assumptions), if –rA = k CACB and CA>>CB
→ -rA ≈ k CB
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5. For batch reactors, find reaction order

i. Find (- dCA / dt) from CA vs t data.

Take ln.

Find the order of rxn by ln (- dCA / dt) = ln k + α ln CA

Find the rate constant, k.

ii. Integral Form:
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6. For PBR, find –rA’ as a function of CA or PA.
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SUMMARYSUMMARY

Differential Method:
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We should differentiate the concentration-time data either 
graphically or numerically.

1. Graphical differentiation

2. Numerical differentiation formula

3. Differentiation of a polynomial fit to the data.

1. Graphical

Tabulate (CAi, ti) observations and for each interval calculate 

∆Cn = Cn – Cn-1 ∆tn = tn – tn-1

(∆CA/ ∆t)3

(∆CA/ ∆t)2

(∆CA/ ∆t)1

∆CA/ ∆t

C3 – C2t3 – t2
C3t3

(dCA / dt)2C2t2

C2 – C1t2 – t1

(dCA / dt)1C1t1

C1 – C0t1 – t0

C0t0

(dCA / dt)∆CA∆tCiti
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Plot these values as a histogram 

Draw a smooth curve

Read estimates of (dCA/dt) at t1, t2, ......

∆x = xn – xn-1

∆y = yn – yn-1

Plot these
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Try to find 

Area(A) ≈ Area(B)

A + C ≈ B + D
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Numerical MethodsNumerical Methods
If the data points are equally spaced, i.e., t1 – t0 = t2 – t1 = ∆t
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Polynomial fit:Polynomial fit:
Fit the conc’n – time data to an nth order polynomial as:
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Integral MethodIntegral Method

We first guess the rxn order and integrate the differential equation used to 
model the batch system. If the order is correct, the plot of conc’n time data 
should be linear.

This method is used when rxn order is known but EA and kA are unknown.

Non Non –– Linear RegressionLinear Regression
Non Non –– Linear LeastLinear Least--Square AnalysisSquare Analysis
We want to find the parameter values (alpha, k, E) for which the sum of 
the squares of the differences, the measured rate (rm), and the calculated 
rate (rc) is a minimum.

# of parameters to be determined

# of runs
That is we want   to be a minimum. 
For concentration-time data, we can integrate the mole balance equation 
for -rA = k CA

alpha to obtain 



5

We find the values of alpha and k which minimize S2
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Vary α and k, obtain S2 (or use a search technique)

S(α’, k’) is a minimum (optimization methods)

Concentration vs Time Equations for the proposed rate equations can be 
done by differential or integration method.

Ex.:Ex.: Liquid phase rxn btw trimethylamine(A) and n-propyl bromide (B) 
was studied by Winkler & Hinshelwood. The results at 139.4oC are 
shown below. Initial sol’ns of A & B in benzene, 0.2 molal, were mixed 
and placed in constant temperature bath. After certain times, they were 
cooled to stop the rxn. Determine the first order and second order 
specificrates, k1 and k2, asssuming the rxn is irreversible. Use integration 
& differential methods.

55.21204

36.7593

25.7342

11.2131
x (%)t, minRun
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Sol’n: Sol’n: 
A + B → C+ + D-

Volume is constant
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0.05521.711.1272004
0.03671.641.3035403
0.02571.701.4620402
0.01121.631.547801

CDk2 x 10-3 (L/mol s)k1 x 10-4 (s-1)t, secRun

If you repeat for four of the runs:
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So, it is SECOND ORDER

Differential MethodDifferential Method

CD = CA0 – CA (moles of D produced = moles of A reacted)

CD = x CA0
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Slopes determined from the curve are given as follows

0.450.050.05
0.640.060.04
0.790.070.03
1.140.080.02
1.380.090.01
1.580.100.0

r = dCD/dt (105 gmol/L)CACD

log rA = log k1 + log CA (from –rA = k1 CA)

log rA = log k2 + log CA
2 = log k2 + 2 log CA (from –rA = k2 CA

2)

1st: log r vs log CA should yield a straight line with a slope of 1.0.

2nd: log r vs log CA should yield a straight line with a slope of 2.0.

log CA

lo
g 

r

slope = 2.0

log r = -2.76 + 2.0 log CA

The data suggest a slope of 2!

log k2 = -2.76

k2 = 1.73 x 10-3 L / mol s



9

Another Way (Batch Reactor Data)

B + A → products

-rA = kA CA
αCB

β if α and β are both unknown, the rxn could be run in an 
excess of B so that CB remains essentially unchanged
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Method of Initial Rates Method of Initial Rates 

If there is a reverse rxn, it could render the differential method ineffective. 
In these cases, initial rates could be used for k & α.

Carry out a series of experiments with different CA0.

Determine –rA0 for each run.

-rA0 = k CA0 α → ln(-rA0)  vs ln(CA0)

Instead of doing at different time steps, repeat the rxn.

Method of Half Lives:Method of Half Lives:

The half life of a rxn, t½, is defined as the ime it takes for the concentration 
of the reactant to fall to half of its initial value. 

If you know t½, find k & α.

If there are more than 1 reactant, use method of excess.
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Differential Reactors

A differential reactor is used to determine the rate of a rxn as a function of 
either concentration or partial pressure

FA0 FAe

∆L

FA0 FAe

∆L

∆W

Conversion is very small in bed
CA is constant ≈ CA0 (gradientless)
Rxn rate is uniform 
(almost isothermal)

Design Equation is similar to a CSTR:
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Deviations from Ideal ReactorsDeviations from Ideal Reactors

When the mixing criteria of ideal reactors are not satisfied, 
mathematical expressions for the conservation equations become more 
difficult.

Deviations from ideal stirred – tank reactors

a) Stagnant regions

b) by – passing 

Deviations from tubular-flow 

a) Longtidunal mixing due to vortices and turbulence

b) Laminar flow (poor radial mixing)

c) By-passing in fixed-bed catalytic reactor.


