Chapter 5

Collection \& Analysis of Rate Data

There are some basic steps in Analysis of Rate Data

1. Postulate a rate law:
a) Power law model for homogeneous rxns:

$$
-r_{A}=k \cdot C_{A}^{\alpha} \cdot C_{B}^{\beta}
$$

b) Langmuir - Hinshelwood for heterogeneous rxns:

$$
-r_{A}^{\prime}=\frac{k \cdot P_{A} \cdot P_{B}}{\left(1+K_{A} \cdot P_{A}+P_{B}\right)^{2}}
$$

2. Select reactor type; i.e.; Batch, CSTR, PFR, PBR......
3. Process your data in term of measured variables $\left(N_{A}, C_{A}\right.$ or $\left.P_{A}\right)$
4. Do simplifications (assumptions), if $-r_{A}=k C_{A} C_{B}$ and $C_{A} \gg C_{B}$ $\rightarrow-r_{A} \approx k C_{B}$
5. For batch reactors, find reaction order
i. Find $(-d C A / d t)$ from CA vs t data.

Take Ln.

Find the order of rxn by $\ln \left(-d C_{A} / d t\right)=\ln k+\alpha \ln C_{A}$
Find the rate constant, k.
ii. Integral Form:
$-\frac{d C_{A}}{d t}=k \cdot C_{A}{ }^{\alpha}$
Integrate
$t=\frac{1}{k}\left[C_{A 0}^{1-\alpha} \ldots \ldots ..\right]$
6. For $P B R$, find $-r_{A}{ }^{\prime}$ as a function of C_{A} or P_{A}.

SUMMARY

Differential Method:

$$
-\frac{d C_{A}}{d t}=k_{A} \cdot C_{A}^{\alpha} \quad \ln \left(-\frac{d C_{A}}{d t}\right)=\ln k_{A}+\alpha \ln C_{A}
$$

slope $=\alpha$

We should differentiate the concentration-time data either graphically or numerically.

1. Graphical differentiation
2. Numerical differentiation formula
3. Differentiation of a polynomial fit to the data.

1. Graphical

Tabulate $\left(\mathrm{C}_{\mathrm{A}}, \mathrm{t}_{\mathrm{i}}\right)$ observations and for each interval calculate
$\Delta \mathrm{C}_{\mathrm{n}}=\mathrm{C}_{\mathrm{n}}-\mathrm{C}_{\mathrm{n}-1} \Delta \mathrm{t}_{\mathrm{n}}=\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}-1}$
\(\left.\left.$$
\begin{array}{ccccc}\mathrm{t}_{\mathrm{i}} & \mathrm{C}_{\mathrm{i}} & \Delta \mathrm{t} & \Delta \mathrm{C}_{\mathrm{A}} & \Delta \mathrm{C}_{\mathrm{A}} / \Delta \mathrm{t} \\
\hline \mathrm{t}_{0} & \mathrm{C}_{0} \\
\mathrm{t}_{1} & \mathrm{C}_{1}\end{array}
$$\right\} \begin{array}{lll}

\mathrm{t}_{1}-\mathrm{t}_{0} \& \mathrm{C}_{1}-\mathrm{C}_{0} \& \left(\Delta \mathrm{C}_{\mathrm{A}} / \Delta \mathrm{t}\right)_{1}

\mathrm{t}_{2} \& \mathrm{C}_{2} \& \left.\mathrm{t}_{2}-\mathrm{t}_{1} / \mathrm{dt}\right)

\& \mathrm{C}_{2}-\mathrm{C}_{1} \& \left(\Delta \mathrm{C}_{\mathrm{A}} / \Delta \mathrm{t}\right)_{2}\end{array}\right\}\)| $\left(\mathrm{dC}_{\mathrm{A}} / \mathrm{dt}\right)_{1}$ |
| :--- |
| t_{3} |
| C_{3} |

Plot these values as a histogram
Draw a smooth curve
Read estimates of $\left(\mathrm{dC}_{\mathrm{A}} / \mathrm{dt}\right)$ at $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots \ldots$

$$
\begin{aligned}
& \Delta x=x_{n}-x_{n-1} \\
& \Delta y=y_{n}-y_{n-1}
\end{aligned}
$$

Plot these
$y_{n}-y_{1}=\sum_{i=2}^{n} \frac{\Delta y}{\Delta x_{i}} \cdot \Delta x_{i}$
$y_{n}-y_{1}=\int_{x_{1}}^{x_{n}} \frac{d y}{d x} \cdot d x$
Try to find
Area $(\mathrm{A}) \approx \operatorname{Area}(\mathrm{B})$
$A+C \approx B+D$

Numerical Methods

If the data points are equally spaced, i.e., $t_{1}-t_{0}=t_{2}-t_{1}=\Delta t$

time (min)	t_{0}	t_{1}	t_{2}	$\ldots \ldots \ldots$.
Conc'n $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$	$\mathrm{C}_{\mathrm{A} 0}$	$\mathrm{C}_{\mathrm{A} 1}$	$\mathrm{C}_{\mathrm{A} 2}$	$\ldots \ldots \ldots$.

$$
\begin{aligned}
\text { For initial point }\left(\frac{d C_{A}}{d t}\right)_{t_{0}} & =\frac{-3 C_{A 0}+4 C_{A 1}-C_{A 2}}{2 \Delta t} \\
\text { interior point }\left(\frac{d C_{A}}{d t}\right)_{t_{i}} & =\frac{1}{2 \Delta t}\left[C_{A(i+1)}-C_{A(i-1)}\right] \\
\text { End point }\left(\frac{d C_{A}}{d t}\right)_{t_{n}} & =\frac{1}{2 \Delta t}\left[C_{A(n-2)}-4 C_{A(n-1)}+C_{A(n)}\right]
\end{aligned}
$$

Polynomial fit:
Fit the conc' n - time data to an $n^{\text {th }}$ order polynomial as:

$$
\mathrm{C}_{\mathrm{A}}=\mathrm{a}_{\mathrm{o}}+\mathrm{a}_{1} \mathrm{t}+\mathrm{a}_{2} \mathrm{t}^{2}+\mathrm{a}_{3} \mathrm{t}^{3}+\mathrm{a}_{4} \mathrm{t}^{4} \ldots \ldots . \mathrm{a}_{\mathrm{n}} \mathrm{t}^{\mathrm{n}}
$$

Find best values for $\left\{a_{0}, a_{1}, a_{2}, \ldots \ldots ., a_{n}\right\}$

$$
\frac{\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}}=\mathrm{a}_{1}+2 \mathrm{a}_{2} \mathrm{t}+3 \mathrm{a}_{3} \mathrm{t}^{2}+\ldots \ldots . \mathrm{n} \mathrm{a}_{\mathrm{n}} \mathrm{t}^{\mathrm{n}-1}
$$

Integral Method

We first guess the rxn order and integrate the differential equation used to model the batch system. If the order is correct, the plot of conc'n time data should be linear.

This method is used when rxn order is known but E_{A} and k_{A} are unknown.

$\frac{d C_{A}}{d t}=r_{A}=-K$
at $\mathrm{t}=0, \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A} 0}$
$\Rightarrow C_{A}=C_{A 0}-k t$

$$
\frac{d C_{A}}{d t}=r_{A}=-k C_{A}
$$

$$
\text { at } t=0, G_{A}=C_{A 0}
$$

$$
\Rightarrow \ln \left(\frac{C_{A 0}}{C_{A}}\right)=k t
$$

$\frac{d C_{A}}{d t}=r_{A}=-k C_{A}^{2}$
at $t=0, C_{A}=C_{A D}$
$\Rightarrow \frac{1}{C_{A}}-\frac{1}{C_{A 0}}=k t$

Non - Linear Regression

Non - Linear Least-Square Analysis

We want to find the parameter values (alpha, k, E) for which the sum of the squares of the differences, the measured rate $\left(r_{m}\right)$, and the calculated rate $\left(r_{c}\right)$ is a minimum.

$$
\sigma^{2}=\sum_{i=1}^{n} \frac{\left(r_{m i}-r_{\mathrm{ci}}\right)^{2}}{N-K} \quad \# \text { of parameters to be determined }
$$

That is we want σ^{2} to be a minimum.
For concentration-time data, we can integrate the mole balance equation for $-r_{A}=k C_{A}$ alpha to obtain

$$
S^{2}=\sum_{i=1}^{N}\left(C_{A m i}-C_{A C i}\right)^{2}=\sum_{i=1}^{N}\left(C_{A m i}-\left[C_{A 0}^{1-\alpha}-(1-\alpha) k t_{i}\right]^{1 / 1-\alpha}\right)^{2}
$$

We find the values of alpha and k which minimize S^{2}

$$
\begin{aligned}
& \frac{d C_{A}}{d t}=k \cdot C_{A}{ }^{\alpha} \\
& k \cdot d t=d C_{A} \cdot C_{A}{ }^{-\alpha} \\
& k \cdot t=\frac{1}{1-\alpha} C_{A}^{1-\alpha}+\text { Const } \\
& \text { Const }=-\frac{C_{A 0}{ }^{1-\alpha}}{1-\alpha} \\
& C_{A}=\sqrt[1-\alpha]{C_{A 0}{ }^{1-\alpha}-(1-\alpha) k \cdot t}
\end{aligned}
$$

Vary α and k, obtain S^{2} (or use a search technique)
$S\left(\alpha^{\prime}, k^{\prime}\right)$ is a minimum (optimization methods)

Concentration vs Time Equations for the proposed rate equations can be done by differential or integration method.

Ex.: Liquid phase rxn btw trimethylamine(A) and n-propyl bromide (B) was studied by Winkler \& Hinshelwood. The results at $139.4^{\circ} \mathrm{C}$ are shown below. Initial sol'ns of A \& B in benzene, 0.2 molal, were mixed and placed in constant temperature bath. After certain times, they were cooled to stop the rxn. Determine the first order and second order specificrates, k_{1} and k_{2}, asssuming the $r x n$ is irreversible. Use integration \& differential methods.

Run	t, \min	$\mathrm{x}(\%)$
1	13	11.2
2	34	25.7
3	59	36.7
4	120	55.2

Sol'n:

$A+B \rightarrow C^{+}+D^{-}$
Volume is constant
$1^{\text {st }}$ order $-\mathrm{r}_{\mathrm{A}}=\frac{d C_{\mathrm{A}}}{d t}=k_{1} \cdot C_{A}$
$2^{\text {nd }}$ order $-\mathrm{r}_{\mathrm{A}}=\frac{d C_{A}}{d t}=k_{2} \cdot C_{A} \cdot C_{B}$

Integration Method

$1^{\text {st }}$ order
$-\ln \frac{\mathrm{C}_{\mathrm{A}}}{\mathrm{C}_{\mathrm{A} 0}}=\mathrm{k}_{1} \cdot \mathrm{t}$
$2^{\text {nd }}$ order
Stoichiometric coefficients are equal and $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.1 \mathrm{molal}$
$-\frac{\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}}=k_{2} \cdot \mathrm{C}_{\mathrm{A}}{ }^{2}$
$\frac{1}{\mathrm{C}_{\mathrm{A}}}-\frac{1}{\mathrm{C}_{\mathrm{A} 0}}=k_{2} \cdot \mathrm{t}$

$$
x=\frac{C_{A 0}-C_{A}}{C_{A 0}} \quad C_{A}=C_{A 0}(1-x)
$$

For the first run $\quad C_{A}=0.1 \cdot 0.888$
Substitute in [1]
$\mathrm{k}_{1}=\frac{1}{t} \cdot \ln \frac{\mathrm{C}_{\mathrm{A} 0}}{\mathrm{C}_{\mathrm{A}}}=\frac{1}{13 \cdot 60} \ln \frac{0.1}{0.0888}=1.54 \times 10^{-4} \mathrm{sn}^{-1}$
Substitute in [2]

$$
\mathrm{k}_{2}=\frac{1}{t \cdot \mathrm{C}_{\mathrm{A} 0}}\left(\frac{1}{1-\mathrm{x}}-1\right)=\frac{0.112}{(13 \cdot 60) \cdot 0.1 \cdot(1-0.112)}=1.63 \times 10^{-3} \frac{\mathrm{~L}}{\mathrm{gmol} \cdot \mathrm{~s}}
$$

If you repeat for four of the runs:

Run	t, sec	$\mathrm{k}_{1} \times 10^{-4}\left(\mathrm{~s}^{-1}\right)$	$\mathrm{k}_{2} \times 10^{-3}(\mathrm{~L} / \mathrm{mol} \mathrm{s})$	C_{D}
1	780	1.54	1.63	0.0112
2	2040	1.46	1.70	0.0257
3	3540	1.30	1.64	0.0367
4	7200	1.12	1.71	0.0552

So, it is SECOND ORDER

Differential Method

$C_{D}=C_{A 0}-C_{A}$ (moles of D produced $=$ moles of A reacted)
$\mathrm{C}_{\mathrm{D}}=\mathrm{xC}_{\mathrm{A} 0}$

$r=-\frac{d C_{A}}{d t}=\frac{d C_{D}}{d t} \quad$ (the slope of the curve)

Slopes determined from the curve are given as follows

C_{D}	C_{A}	$\mathrm{r}=\mathrm{dC}_{\mathrm{D}} / \mathrm{dt}\left(10^{5} \mathrm{gmol} / \mathrm{L}\right)$
0.0	0.10	1.58
0.01	0.09	1.38
0.02	0.08	1.14
0.03	0.07	0.79
0.04	0.06	0.64
0.05	0.05	0.45

$$
\begin{array}{ll}
\log r_{A}=\log k_{1}+\log C_{A} & \left(\text { from }-r_{A}=k_{1} C_{A}\right) \\
\log r_{A}=\log k_{2}+\log C_{A}^{2}=\log k_{2}+2 \log C_{A} & \left(\text { from }-r_{A}=k_{2} C_{A}{ }^{2}\right)
\end{array}
$$

1 st: $\log r$ vs $\log C_{A}$ should yield a straight line with a slope of 1.0.
$2^{\text {nd }}: \log r$ vs $\log C_{A}$ should yield a straight line with a slope of 2.0.
$\log r=-2.76+2.0 \log C_{A}$
The data suggest a slope of 2 !
$\log \mathrm{k}_{2}=-2.76$
$\mathrm{k}_{2}=1.73 \times 10^{-3} \mathrm{~L} / \mathrm{mol} \mathrm{s}$

Another Way (Batch Reactor Data)

$$
B+A \rightarrow \text { products }
$$

$-r_{A}=k_{A} C_{A}{ }^{a} C_{B}{ }^{\beta}$ if α and β are both unknown, the rxn could be run in an excess of B so that C_{B} remains essentially unchanged
$-\mathrm{r}_{\mathrm{A}}=\mathrm{k}^{\prime} \cdot \mathrm{C}_{\mathrm{A}}{ }^{\alpha}$ where $\mathrm{k}^{\prime}=\mathrm{k}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}{ }^{\beta} \approx \mathrm{k}_{\mathrm{A}} \mathrm{C}_{\mathrm{B} 0}^{\beta}$
In determining α, the rxn is carried (excess of A)
$-\mathrm{r}_{\mathrm{A}}=\mathrm{k}^{\prime} \cdot \mathrm{C}_{\mathrm{B}}{ }^{\beta}$ where $\mathrm{k}^{\prime \prime}=\mathrm{k}_{\mathrm{A}} \mathrm{C}_{\mathrm{A}}{ }^{\alpha} \approx \mathrm{k}_{\mathrm{A}} \mathrm{C}_{\mathrm{A} 0}{ }^{\alpha}$

Solving with search

$$
S^{2}=\sum_{i=1}^{4}\left(C_{A m, i}-\left[C_{A 0}^{1-\alpha}-(1-\alpha) k \cdot t_{i}\right]^{1 / 1-\alpha}\right)^{2}
$$

t	C_{D}	C_{A}
780	0.0112	0.0888
2040	0.0257	0.0743
3540	0.0367	0.0633
7200	0.0552	0.0448

$S^{2}=\sum_{i=1}^{n}\left(C_{A m, i}-a b s\left[C_{A 0}^{1-\alpha}-(1-\alpha) k \cdot t_{i}\right]^{1 / 1-\alpha}\right)^{2} \quad$ fminsearch

Method of Initial Rates

If there is a reverse rxn, it could render the differential method ineffective. In these cases, initial rates could be used for $k \& \alpha$.

Carry out a series of experiments with different CAO.
Determine -rA0 for each run.
$-\mathrm{rAO}=\mathrm{k} C A 0 \alpha \rightarrow \quad \ln (-\mathrm{rAO})$ vs $\ln (\mathrm{CAO})$
Instead of doing at different time steps, repeat the rxn.

Method of Half Lives:

The half life of a rxn, $t_{1 / 2}$, is defined as the ime it takes for the concentration of the reactant to fall to half of its initial value.

If you know $t_{1 / 2}$, find $k \& \alpha$.
If there are more than 1 reactant, use method of excess.

$$
\begin{aligned}
& -r_{A}=k \cdot C_{A}^{\alpha} \quad(A \rightarrow \text { products }) \\
& -\frac{d C_{A}}{d t}=-r_{A}=k \cdot C_{A}^{\alpha}
\end{aligned}
$$

$$
\text { @ } t=0 \quad C_{A}=C_{A 0} \quad \text { @ } t=t_{1 / 2} \quad C_{A}=\frac{1}{2} C_{A 0}
$$

$t=\frac{1}{k(\alpha-1)}\left(\frac{1}{C_{A}^{\alpha-1}}-\frac{1}{C_{A 0}^{\alpha-1}}\right)$
$t=\frac{1}{k(\alpha-1)}\left(\left(\frac{C_{A 0}}{C_{A}}\right)^{\alpha-1}-1\right)$
$t_{1 / 2}=\frac{2^{\alpha-1}-1}{k(\alpha-1)}\left(\frac{1}{C_{A 0}}\right)^{\alpha-1}$
Similarly $\quad t_{1 / n}=\frac{n^{\alpha-1}-1}{k(\alpha-1)}\left(\frac{1}{C_{A 0}}\right)^{\alpha-1}$
$\ln t_{1 / 2}=\ln \frac{2^{\alpha-1}-1}{(\alpha-1) k}+(1-\alpha) \ln C_{A 0}$

$\ln C_{A 0}$

Differential Reactors

A differential reactor is used to determine the rate of a rxn as a function of either concentration or partial pressure

Conversion is very small in bed C_{A} is constant $\approx \mathrm{C}_{\mathrm{AO}}$ (gradientless)
$R x n$ rate is uniform
(almost isothermal)

Design Equation is similar to a CSTR:
$F_{A 0}-F_{A e}+\frac{\text { Rate of rxn }}{\text { mass of cat }}($ mass of cat $)=0$
$F_{A 0}-F_{A e}+r_{A}{ }^{\prime} \cdot \Delta w=0$
$r_{A}{ }^{\prime}=\frac{F_{A 0}-F_{A e}}{\Delta w}$
$r_{A}{ }^{\prime}=\frac{v_{0} C_{A 0}-v \cdot C_{A e}}{\Delta w}$ (in terms of conc'n)
$r_{A}{ }^{\prime}=\frac{F_{A 0} \cdot x}{\Delta w}=\frac{F_{P}}{\Delta w} \quad$ (in terms of flow rate)
$r_{A}{ }^{\prime}=\frac{v_{0}\left(C_{A 0}-C_{A e}\right)}{\Delta w}=\frac{v_{0}\left(C_{P}\right)}{\Delta w}$

Deviations from Ideal Reactors

When the mixing criteria of ideal reactors are not satisfied, mathematical expressions for the conservation equations become more difficult.

Deviations from ideal stirred - tank reactors
a) Stagnant regions
b) by - passing

Deviations from tubular-flow
a) Longtidunal mixing due to vortices and turbulence
b) Laminar flow (poor radial mixing)
c) By-passing in fixed-bed catalytic reactor.

