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Derivation of the Convective Dispersion Equation with Adsorption by Markov
Random Ways
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The convective dispersion equation with adsorption is derived on the basis of the Chapman—Kolmogroff equation

which expresses the statistical properties of the Markov transition probability. The acquired equation has the
same expression as the one derived on the basis of the combination of both the mass balance equation and
the particles retention kinetics equation. The probability variables that describe the random movement of solute
particles have a definite physical significance associated with the parameters in the convective dispersion equation.
The derivation confirms the validity of the Markov process to describe the particles movement in the process of

convective dispersion.
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In the process of groundwater transportation, the
combined effects of the molecular diffusion and me-
chanical dispersion of the solute particles make the
front edge of the displacing fluid not a transitional
region with a uniform or a sudden change.[' =% Many
physical and chemical reactions that occur in this area
have a great influence on both the overall transporta-
tion of the solute and its concentration distribution
inside porous media, and understanding these laws
of solute transportation and distribution is useful for
controlling of groundwater contamination!®" in envi-
ronment protection and the enhancement of oil dis-
placement efficiency by chemical agents.[>%° Many
studies in this area have been performed either at lab-
oratories or by mathematical modeling. Via a labora-
tory method, Fick obtained the first Fick’s law that
describes stable status diffusion, and he then deduced
the second Fick’s law for describing unstable diffu-
sion. Aiming at the model provided by Iwasal'®, that
did not consider the hydrodynamic dispersion, Altoé
et al.'!] took the dispersive effect into consideration
in the particles retention kinetics equation and con-
structed a complete deep filtration model on the basis
of the mass balance equation of the suspension. Us-
ing the method of infinitesimal volume, Ge et al.['?
derived different differential forms of the convective
dispersion equations for the ideal condition and the ac-
tual conditions including the viscosity difference or the
adsorption. Recently, new methods like fractall'3—15]
and fractional differentiation!*®=19 were proposed to
construct dispersive models of solute transportation.
At the same time, the statistical nature of the behav-
ior has been observed in the convective dispersion of
solute particles, as the concentration distribution at
the front edge of dispersion is the cumulative result of
the random walk of a large number of particles. After
analyzing a great number of experimental data statis-
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tically, Wu et al.l?% investigated the randomicity of
parameters in the dispersion equation. The molecular
dynamics simulation used to model the characteristic
of motion of solute particles has solid foundations in
probability theory.?’?2) Many authors also obtained
the probability solution to the convective dispersion
equation.'%12:23] However, there is no report of the
complete derivation of the convective dispersion equa-
tion based on the theory of probability statistics so as
to provide direct support to the randomicity of the
convective dispersion equation. In this Letter, the
convective dispersion equation with adsorption is de-
rived according to the Chapman—Kolmogroff equation
which is used to describe the transition probability of
the Markov process.

The distinct characteristics of the Markov pro-
cess lie in the memorylessness of the former behav-
iors, and its transition probability is expressed by the
Chapman-Kolmogroff equation!4

pxs, ts|zi, t1) = /p($3,t3|$2,t2)
-p(xg,t2|x1,t1)d:z:2. (1)

For a Markov process, in any case, if ¢ > 0 and the
following expression remains correct for any z, ¢t and
At, the samples’ route is a continuous function of their
probability all the way up to 1.

. 1
AI%IE() A /z2|>ap(x, t+ Atlz,t)de =0. (2)

The Chapman—Kolmogroff equation can be trans-
formed to a differential form under the proper pre-
sumed condition which is closely related to the con-
tinuous quality of the process. According to Eq. (2) of
the continuity condition, effort is made to divide the
differentiation condition into several parts, one part
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corresponds to the continuous movement of some typ-
ical particles, and the others correspond to the discon-
tinuous movement.

For € > 0, in any case, the following expressions
must be correct:

(i) Alirfop(sc, t+ At|z,t) /At = W(x|z,t). (3)

If |x — z| > ¢ and Eq. (3) is correct for all of z, z
and ¢, then

.. . 1

(i) Jim /|<x — pla,t+ Az, t)dz
. 1
i) Jim /I@c — )5 - %)

-p(z,t + At|z, t)dx = B;j(z,t) + O(e).  (5)

Equations (4) and (5) are correct for all z, € and ¢.

According to Eq. (2), the continuity condition, if
W (z|z,t) = 0 for all x # z, there is only a continuous
route for this process. Then, this function necessarily
describes a discontinuous movement in a certain way,
while the variables A; and B;; are inevitably associ-
ated with the continuous movement.

In the sum of the above continuity condition
and presumed conditions, the differential form of the
Chapman-Kolmogroff equation was derived as!*4

0
6,5]?(2, t|y7 S) = - Z 87AL(Z7 t)p(z, t|ya S)

1 02
32 gz, D Op(= o)

)

+ [0 Gl oty )
— W(x|z,t)p(z, tly, s)]dz. (6)

In a circular physical sand model initially saturated
with crude oil, at time ¢ = 0 a solution with a certain
concentration of a chemical agent is injected from the
inlet. Thus at the beginning (¢ = 0) the interface
between the saturated fluid and the flooded liquid lo-
cates at the site x = 0. The concentration of the
displacing solution on the left side of the interface fol-
lows the equation ¢ = ¢; while in the core that locates
at the right of the interface the concentrations of the
displaced liquid follow the equation ¢ = 0, see Fig. 1.

At the initial time ¢ = 0, the substance in solution
is carried out from the inlet towards the outlet inside
the core. Afterwards, the locations of solute particles
at any time ¢ > 0 form a one-dimensional random vec-
tor (&, t > 0). When ¢ changes in the parameters set
T € [0,00], {&,t > 0} denotes a random process.

If & = y at time ¢ = s is known, the distribution
& (t > s) is independent of the values before time s be-
cause of the randomicity of both the pores, channels

and the particles’” movement. According to the defi-
nition of the Markov process, {&,¢ > 0} is a Markov
process. Its transition probability distribution func-
tion can be expressed as F(z,t;y,s) = P(& < x|& =
y). If the probability density is denoted by f(y,t; x, s),
there is an expression f(z,t;y,s) = OF(x,t;y,s)/0x.
Because there exists the phenomenon of the solute
particles in the porous media, it can be presumed that
f(x,t;y,s) complies with the following three condi-
tions for any number of ¢ and At if € > 0 and At > 0.

1
lim — t+ Atyy, t)de =
Jim /|zy|>sf(x’ + Aty t)de =0, (7)

. 1
k] o

flz,t+ Aty y, t)de = Ay, t), (8)
1

lim — —y)?

Ao /|< v)

fz,t + Aty y, t)dx = B(y, ). 9)

Equation (7) shows that the probability that the so-
lute particle moves away from the space interval (y, x)
within At since the initial time ¢ at the beginning
point y is an infinitesimal of higher order than At. It
explains that solute particles cannot cover a big dis-
tance within a short time in the pore-channels. That
is, the particle moves continuously. Under condition
(7), the variable A(y,t) in Eq.(8) has the physical
meaning of the average speed within At for particles
starting at time ¢ by point y, and B(y, t) is related to
the average sweep area. Thus {{;,t > 0} is a convec-
tive dispersion process.

Fig. 1. Flow model in porous medium.

Then the differential Chapman—-Kolmogroff equa-
tion can be reduced to the Fokker—Planck equation,
of which the one-dimensional expression is shown as
follows:

OF@.ty:8) 9 14 1) £ty )]

ot O
1 02 B
+ 5@[ (y, ) f(z,tly, s)]- (10)

It corresponds to the mathematical diffusion process
where A(y,t) is a drift vector and B(y,t) is a diffu-
sion matrix. If W(z|z,t) = 0, then the requirement
for the continuity route can be satisfied. Thus the
Fokker—Planck equation describes a process with the
continuity route X (t).

In Eq. (10), the detailed expressions for A(y,t) and
B(y, t) and their partial differential forms are deduced
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in the following. Under condition (7), Eq. (8) can be
transformed to

lim 7E[€t+At - ft|§t = y] = A(yat)7 (11)

At—0 At

where A(y,t) is the quotient of the average random
displacement to the time difference and A(y, t) should
mean the average fluid speed of the solute particles in
the porous media that is denoted by v.

Ay,t) = . (12)
Under condition (7), Eq. (9) can be transformed to

lim —E[(fwm — &P & =y =

Jim Bly.1).  (13)

According to Ref. [25], the dispersion coefficient D can
be defined by the quotient of the variance o to time
as

D =o/2t, (14)

by the definition of variance

lim = B[(&sar—E)21€ = 4]

Jim — = B(y,t) = 2D. (15)

Now the differential form of A(y,t) can be derived
from Eq. (8) as

—=" 7 — lim .
ox At—0 At

(16)

Equation (16) indicates that some particles travel
from point y at time t to the point x by convective dis-
persion with a probability density f(z,t+At;y,t) and
a speed (x—y)/At. If these particles are captured at a
statistical average speed v and with a constant prob-
ability density A in the fluid flowing direction, then

or AI%IEO At = v, (17)
_ )2 .
ox At—0 At

Now Eq. (10) can be expanded to the following expres-
sion with the first derivative

of (z,tly,s)/0t

= 280 gy, - LS
m[ Bt tly.5)
+ L%Sy’ ) By, t)] . (19)

Substituting Eqs. (12), (15),
Eq. (19), we have

(17) and (18) into

0 0

OICUD5) . g, — - L 102)
B P

+ %3— DX - f(,tly, 5) +DW} (20)

Because of the constant values of A and D, Eq. (20)
can be expanded further as

Of (x,tly,t) of (x,tly,s)
(9t - _U)\ f(x,t|y,3)—v ax
1\ 0f (@ tlys) 1. 0*f(atlys)
T PAT G e T (21)

Substituting Eqgs. (12), (15),
Eq. (21), we have

(17) and (18) into

8f(13,t|y,8) _ _ 8f($7t‘ya S)
01 ) _ - gy, s) - 2L 02)
Of (z, tly, s) 9*f(=,tly, s)
+ DATESE 4D S (22)
Define
t
C(x,t)z/ f(z,t;0,8)ds, (23)
0

which means that the solute concentration at point x
by time t is the accumulation of the probability den-
sity of particles that move to the point = from the
inlet at every time within the interval of [0,¢]. Then
Eq. (22) transforms to a partial differential equation
that the solute concentration should meet, i.e.

oC(z,t) _0C(x,t)
o = vA-C(x,t) —v B
BC(x t) 02C (x,t)
+ DA i D. o (24)

The physical meaning of the left term in Eq. (24) is the
concentration change of solute particles versus time in
a porous unit. On the right side of the above equation,
the second and last terms denote the contribution of
convective and dispersive fluxes to the transportation
of solute particles forward, respectively; while the first
and third terms indicate the contribution of solute
particles in the convective and dispersive fluxes to the
total particles captured in a porous unit, respectively.

To solve this equation conveniently, here some
dimensionless variables are introduced to make the
physical parameters,

T vt
X:z, T:f7 8D:E, C:C(X,T),
A =)L, T>0, 0<X <1,
then the equation is converted to
oC oC 0%C
— =—A Aep — . 2
or ~ ACHAep )6X+6D8X2 (25)

Equation (25) is in the same form as the convective
dispersion model with adsorption built on the com-
bined bases of both the mass balance equation and
the particle capture kinetics equation. ']
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In summary, the differential form of the Chapman—
Kolmogroff equation can be converted to the Fokker—
Planck equation if there is no jump for the particles
described. These particles in the process have con-
tinuous sample routes. The Fokker—Planck equation
describes a process with a continuous sample route.
The probability variables that describe the random
movement of solute particles have a definite physical
significance associated with parameters in the con-
vective dispersion equation. Considering the physi-
cal meanings of spatial derivatives of the drift vector
and the diffusion matrix, with the constant particle
capture probability, the derived convective dispersion
equation with adsorption is in the same form as the
one deduced by Altoé on the combined bases of both
the mass balance equation and the particle capture
kinetics. Thus the Markov properties of the convec-
tive dispersion of solute particles are confirmed in the
derivative process.
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