

UNIVERSITY OF TECHNOLOGY, JAMAICA

COLLEGE/ FACULTY: Faculty of Engineering and Computing

SCHOOL/ DEPARTMENT: Engineering/ Chemical Engineering

Final Examination, Semester 1

Module Name:

Chemical Reaction Engineering

Module Code:

CHE 3006

Date: December

2010

Theory/ Practical:

Theory

Groups:

Beng3C

Duration:

2 Hours

Instructions

- 1. ANSWER ALL QUESTIONS
- 2. EACH QUESTION MUST BEGIN ON A NEW PAGE
- 3. LEAVE TWO LINES BETWEEN PARTS OF A QUESTION
- 4. SHOW CLEARLY ALL EQUATIONS USED FOR CALCULATIONS
- 5. ANSWER MUST BE NUMBERED IDENTICAL TO THE QUESTION BEING ANSWERED
- 6. THE INTENDED MARK IS INDICATED AT THE BEGINNING OF EACH QUESTION
- 7. FORMULA AND UNIT CONVERSION SHEETS ARE ATTACHED

Question 1:(10 marks)

The exothermic reaction $A \rightarrow B + C$ was carried out adiabatically and the following data recorded:

-r.	0	0.2	0.4	0.45	0.5	0.6	0.8	100
(mol/dm ³ .min)	1.0	1.67	5.0	5.0	5.0	5.0	1.25	0.91

The entering molar flow rate of A was 300 mol/min.

- a) What are the PFR and CSTR volumes necessary to achieve 40% conversion
- b) Over what range of conversions would the CSTR and PFR reactor volumes be identical [5]
- c) Show graphically the volume of a PFR for 40% conversion followed by a CSTR for up to 80% conversion

Figure 1. Levenspiel plot

- d) Using Figure 1, what PFR volume is necessary to achieve 50% conversion and what CSTR volume is necessary to achieve 50% conversion? [2]
- e) Show the answers from part (d) graphically. [1]

[1]

Question 2: (16 marks)

The gas phase reaction:

 $N_2 + 3 H_2 \rightarrow 2N H_3$

is to be carried out isothermally in a flow system with no pressure drops. The molar feed is $60\%~H_2$ and $40\%~N_2$ at a pressure of 15 atm and $200~^{\circ}\mathrm{C}$.

a) Construct a stoichiometric table including a column for concentration

b)	What are the values for C_{AO} , θ_B , θ_C , δ , and ϵ ?	[6]
U)	what are the values for C_{AO} , θ_{B} , θ_{C} , δ and ϵ ?	

- c) Prove that Hydrogen is the limiting reactant [5]
- d) Calculate the concentration of Nitrogen and ammonia at 55% conversion? [1]
- e) Write a rate law in terms of conversion if it was second order in H₂ and overall first order. [2]

[2]

Question 3: (10 marks)

The gaseous reaction A → B has a unimolecular reaction rate constant of 0.0015 min⁻¹ at 80°F. This reaction is to be carried out in *parallel tubes* 3m long and 2.5cm inside diameter under a pressure of 1000kPa at 126°C. A production rate of 1000 g/h of B is required. Assuming an activation energy of 25,000 cal/mol, how many tubes are needed if the conversion of A is to be 90%? Assume perfect gas laws. A and B each have molecular weight of 58 g/mol.

 $1 dm^3 = 1000 cm^3$

PV= nRT

V= hR7

Question-4: (14 marks)

In order to study the photochemical decay of aqueous bromine in bright sunlight, a small quantity of liquid bromine was dissolved in water contained in a glass battery jar and placed in direct sunlight. The following data were obtained:

Temperature = 25°C

Time (min)	10	20	30	40	50	60
Pom De	2.45			4		
Ppm Br ₂	2.45	1.74	1.23	0.88	0.62	0.44

a) Determine whether the reaction rate is zero, first, or second order in bromine, and calculate the reaction rate constant in units of your choice.

[10]

b) Assuming identical exposure conditions, calculate the required hourly rate of injection of bromine (in grams) into a sunlit body of water, 25,000 gal in volume, in order to maintain a sterilizing level of bromine of 1.0 ppm

[4]

ppm= mg/l 1gal=3.785L

TOTAL MARKS = 50

END OF EXAM

$$\int_{0}^{x} \frac{dx}{1-x} = \ln \frac{1}{1-x}$$

$$\int_{x_{1}}^{x_{2}} \frac{dx}{(1-x)^{2}} = \frac{1}{1-x_{2}} - \frac{1}{1-x_{1}}$$

$$\int_{0}^{x} \frac{dx}{(1-x)^{2}} = \frac{x}{1-x}$$

$$\int_{0}^{x} \frac{dx}{1+\varepsilon x} = \frac{1}{\varepsilon} \ln (1+\varepsilon x)$$

$$\int_{0}^{x} \frac{(1+\varepsilon x)dx}{1-x} = (1+\varepsilon) \ln \frac{1}{1-x} - \varepsilon x$$

$$\int_{0}^{x} \frac{(1+\varepsilon x)dx}{(1-x)^{2}} = \frac{(1+\varepsilon)x}{1-x} - \varepsilon \ln \frac{1}{1-x}$$

$$\int_{0}^{x} \frac{(1+\varepsilon x)^{2}dx}{(1-x)^{2}} = 2\varepsilon (1+\varepsilon) \ln (1-x) + \varepsilon^{2}x + \frac{(1+\varepsilon)^{2}x}{1-x}$$

2. Simpson's one-third rule (three-point) A more accurate evaluation of the integral can be found with the application of Simpson's rule

$$\int_{X_0}^{X_2} f(X) \ dX = \frac{h}{3} [f(X_0) + 4f(X_1) + f(X_2)]$$

where

$$h = \frac{X_2 - X_0}{2} \qquad X_1 = X_0 + h$$

Ideal Gas Constant

$$R = \frac{0.73 \text{ ft}^3 \cdot \text{atm}}{16 \text{ mol} \cdot {}^{\circ}\text{R}}$$

$$R = \frac{8.314 \text{ kPa} \cdot \text{dm}^3}{\text{mol} \cdot \text{K}}$$

$$R = \frac{8.314 \text{ kPa} \cdot \text{dm}^3}{\text{mol} \cdot \text{K}}$$

$$R = \frac{8.3144 \text{ J}}{\text{mol} \cdot \text{K}}$$

$$R = \frac{8.3144 \text{ J}}{\text{mol} \cdot \text{K}}$$

$$R = \frac{1.987 \text{ cal}}{\text{mol} \cdot \text{K}}$$

Boltzmann's constant
$$k_B = 1.381 \times 10^{-23} \frac{J}{\text{molecule · K}}$$

= $1.381 \times 10^{-23} \text{ kg m}^2/\text{s}^2/\text{molecule/K}$

Volume of Ideal Gas

I lb-mol of an ideal gas at 32°F and 1 atm occupies 359 ft3 (0.00279 lbmol/ft3). I mol of an ideal gas at 0°C and I atm occupies 22.4 dm3 (0.0446 mol/dm3).

$$C_{\rm A} = \frac{P_{\rm A}}{RT} = \frac{y_{\rm A}P}{RT}$$

where $C_A = \text{concentration of A. mol/dm}^3$ T = temperature, K y_A = mole fraction of A P = pressure, kPaR = ideal gas constant, 8.314 kPa·dm³/mol·K

Appendix

Reactor	Differential	Algebraic	Integral	Differential	Algebraic	Integral
Batch	$\frac{dN_A}{dt} = r_A V$		$t = \int_{N_{A\Phi}}^{N_A} \frac{dN_A}{r_A V}$	$N_{A0} \frac{dX}{dt} = -r_A V$		$t = N_{A0} \int_{0}^{X} \frac{dX}{-r_{A}}$
CSTR		$V = \frac{F_{A0} - F_{A}}{-r_{A}}$			$V = \frac{F_{A0}X}{-r_A}$	
PFR	$\frac{dF_A}{dV} = r_A$		$V = \int_{F_{A0}}^{F_{A}} \frac{dF_{A}}{r_{A}}$	FAD dX = -rA		$V = F_{A0} \int_{0}^{X} \frac{dX}{-r_{A}}$
PBR	$\frac{dF_A}{dVV} = r'_A$		W = FA OFA	$F_{AO} \frac{dX}{dW} = -r'_A$		$VV = F_{A0} \int_{0}^{X} \frac{dX}{-r_{A}}$

$$k = Ae^{-E/RT}$$

$$k(T_2) = k(T_1) exp \left[\frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \right]$$

Zero Order

First Order

Second Order

Zero order, $\alpha = 0$

First order $\alpha = 1$

Second order $\alpha = 2$

$$\ln\left(\frac{C_{A0}}{C_{A}}\right)$$
 slope = k

$$\frac{dC_A}{dt} = r_A = -k$$

$$\frac{dC_A}{dt} = r_A = -k \qquad \frac{dC_A}{dt} = r_A = -kC_A \qquad \frac{dC_A}{dt} = r_A = -kC_A^2$$

$$\frac{dC_A}{dt} = r_A = -kC_A^2$$

at
$$t = 0$$
, $C_A = C_{A0}$

at
$$t=0$$
, $C_A=C_{A0}$ at $t=0$, $C_A=C_{A0}$

$$\Rightarrow C_A = C_{A0} - kt$$

$$\Rightarrow \ln\left(\frac{C_{A0}}{C_A}\right) = kt$$
 $\Rightarrow \frac{1}{C_A} - \frac{1}{C_{A0}} = kt$

$$\Rightarrow \frac{1}{C_A} - \frac{1}{C_{A0}} = K$$