
Chapter 2 

The First Law and Other 
Basic Concepts 

2.1 JOULE'S EXPERIMENTS 

The present-day understanding of heat and its relation to work developed during the last half 
of the nineteenth century. Crucial to this understanding were the many experiments of James 
P. ~oule'  (1 8 18-1 889), carried out in the cellar of his home near Manchester, England, during 
the decade following 1840. 

In their essential elements Joule's experiments were simple enough, but he took elaborate 
precautions to insure accuracy. In the most famous series of measurements, he placed known 
amounts of water, oil, and mercury in an insulated container and agitated the fluid with a 
rotating stirrer. The amounts of work done on the fluid by the stirrer were accurately measured, 
and the temperature changes of the fluid were carefully noted. He found for each fluid that a 
fixed amount of work was required per unit mass for every degree of temperature rise caused 
by the stirring, and that the original temperature of the fluid could be restored by the transfer 
of heat through simple contact with a cooler object. Thus Joule was able to show conclusively 
that a quantitative relationship exists between work and heat and, therefore, that heat is a form 
of energy. 

2.2 INTERNAL ENERGY 

In experiments such as those conducted by Joule, energy is added to a fluid as work, but is 
transferred from the fluid as heat. What happens to this energy between its addition to and 
transfer from the fluid? A rational concept is that it is contained in the fluid in another form, 
called internal energy. 

The internal energy of a substance does not include energy that it may possess as a result 
of its macroscopic position or movement. Rather it refers to energy of the molecules internal 
to the substance. Because of their ceaseless motion, all molecules possess kinetic energy of 
translation; except for monatomic molecules, they also possess kinetic energy of rotation and 

'These experiments and their influence on the development of thermodynamics are described by H. J. Steffens, 
James Prescott Joule and the Concept of Energy, Neale Watson Academic Publications, Inc., New York, 1979. 
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of internal vibration. The addition of heat to a substance increases this molecular activity, and 
thus causes an increase in its internal energy. Work done on the substance can have the same 
effect, as was shown by Joule. 

The internal energy of a substance also includes the potential energy resulting from inter- 
molecular forces (Sec. 16.1). On a submolecular scale energy is associated with the electrons 
and nuclei of atoms, and with bond energy resulting from the forces holding atoms together as 
molecules. This form of energy is named internal to distinguish it from the kinetic and potential 
energy associated with a substance because of its macroscopic position or motion, which can 
be thought of as external forms of energy. 

Internal energy, has no concise thermodynamic definition. It is a thermodynamic primi- 
tive. It cannot be directly measured; there are no internal-energy meters. As a result, absolute 
values are unknown. However, this is not a disadvantage in thermodynamic analysis, because 
only changes in internal energy are required. 

2.3 THE FIRST LAW OF THERMODYNAMICS 

The recognition of heat and internal energy as forms of energy makes possible a generalization 
of the law of conservation of mechanical energy (Sec. 1.8) to include heat and internal energy 
in addition to work and external potential and kinetic energy. Indeed, the generalization can be 
extended to still other forms, such as surface energy, electrical energy, and magnetic energy. This 
generalization was at first a postulate. However, the overwhelming evidence accumulated over 
time has elevated it to the stature of a law of nature, known as the first law of thermodynamics. 
One formal statement is: 

Although energy assumes many forms, the total quantity of energy is 
constant, and when energy disappears in one form it appears simul- 
taneously in other forms. 

In application of the first law to a given process, the sphere of influence of the process is 
divided into two parts, the system and its surroundings. The region in which the process occurs 
is set apart as the system; everything with which the system interacts is the surroundings. The 
system may be of any size depending on the application, and its boundaries may be real or 
imaginary, rigid or flexible. Frequently a system consists of a single substance; in other cases 
it may be complex. In any event, the equations of thermodynamics are written with reference 
to some well-defined system. This focuses attention on the particular process of interest and 
on the equipment and material directly involved in the process. However, the first law applies 
to the system and surroundings, and not to the system alone. In its most basic form, the first 
law requires: 

A(Energy of the system) + A(Energy of surroundings) = 0 (2.1) 

where the difference operator "A" signifies finite changes in the quantities enclosed in paren- 
theses. The system may change in its internal energy, in its potential or kinetic energy, and in 
the potential or kinetic energy of its finite parts. Since attention is focused on the system, the 
nature of energy changes in the surroundings is not of interest. 

In the thermodynamic sense, heat and work refer to energy in transit across the boundary 
which divides the system from its surroundings. These forms of energy are not stored, and are 
never contained in a body or system. Energy is stored in its potential, kinetic, and internal 



20 CHAPTER 2. The First Law and Other Basic Concepts 

forms; these reside with material objects and exist because of the position, configuration, and 
motion of matter. 

2.4 ENERGY BALANCE FOR CLOSED SYSTEMS 

If the boundary of a system does not permit the transfer of matter between the system and 
its surroundings, the system is said to be closed, and its mass is necessarily constant. The 
development of basic concepts in thermodynamics is facilitated by a careful examination of 
closed systems, and for this reason they are treated in detail in the following sections. Far more 
important for industrial practice are processes in which matter crosses the system boundary as 
streams that enter and leave process equipment. Such systems are said to be open, and they are 
treated later in this chapter, once the necessary foundation material has been presented. 

Since no streams enter or leave a closed system, no internal energy is transported across 
the boundary of the system. All energy exchange between a closed system and its surroundings 
then appears as heat and work, and the total energy change of the surroundings equals the net 
energy transferred to or from it as heat and work. The second term of Eq. (2.1) may therefore 
be replaced by 

A(Energy of surroundings) = f Q f W 

The choice of signs used with Q and W depends on which direction of transport is regarded 
as positive. 

Heat Q and work W always refer to the system, and the modern sign convention makes the 
numerical values of both quantities positive for transfer into the system from the surroundings. 
The corresponding quantities taken with reference to the surroundings, Q,,, and W,,,, have 
the opposite sign, i.e., Q,,, = - Q and W,,, = - W .  With this understanding: 

A(Energy of surroundings) = Q,,, + w,, = -Q - w 
Equation (2.1) now  become^:^ 

A(Energy of the system) = Q + W (2.2) 

This equation means that the total energy change of a closed system equals the net energy 
transferred into it as heat and work. 

Closed systems often undergo processes that cause no change in the system other than 
in its internal energy. For such processes, Eq. (2.2) reduces to: 

where U t  is the total internal energy of the system. Equation (2.3) applies to processes involving 
finite changes in the internal energy of the system. For dzTeuentia1 changes: 

2The sign convention used here is recommended by the International Union of Pure and Applied Chemistry. 
However, the original choice of sign for work and the one used in the first four editions of this text was the opposite, 
and the right side of Eq. (2.2) was then written Q - W. 
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Both of these equations apply to closed systems which undergo changes in internal energy 
only. The system may be of any size, and the values of Q ,  W, and Ut  are for the entire system, 
which must of course be clearly defined. 

All terms in Eqs. (2.3) and (2.4) require expression in the same units. In the SI system 
the energy unit is the joule. Other energy units in use are the m kgf, the calorie, the (ft lbf), and 
the (Btu). 

Properties, such as volume V t  and internal energy U' depend on the quantity of material 
in a system; such properties are said to be extensive. In contrast, temperature and pressure, the 
principal thermodynamic coordinates for homogeneous fluids, are independent of the quantity 
of material, and are known as intensive properties. An alternative means of expression for the 
extensive properties of a homogeneous system, such as V t  and U t ,  is: 

V t = m V  or V t = n V  and 

where the plain symbols V and U represent the volume and internal energy of a unit amount of 
material, either a unit mass or a mole. These are called specijic or molar properties, and they 
are intensive, independent of the quantity of material actually present. 

Although Vt and Ut for a homogeneous system of arbitrary size are 
extensive properties, specific and molar volume V (or density) and 
specific and molar internal energy U are intensive. 

Note that the intensive coordinates T and P have no extensive counterparts. 
For a closed system of n moles Eqs. (2.3) and (2.4) may now be written: 

In this form, these equations show explicitly the amount of substance comprising the system. 
The equations of thermodynamics are often written for a representative unit amount of 

material, either a unit mass or a mole. Thus for n = 1 Eqs. (2.5) and (2.6) become: 

A U = Q + W  and d U = d Q + d W  

The basis for Q and W is always implied by the quantity appearing on the left side of the 
energy equation. 

Equation (2.6) is the ultimate source of all property relations that connect the internal 
energy to measurable quantities. It does not represent a dejnition of internal energy; there is 
none. Nor does it lead to absolute values for the internal energy. What it does provide is the 
means for calculating changes in this property. Without it, the first law of thermodynamics 
could not be formulated. Indeed, the first law requires prior affirmation of the existence of the 
internal energy, the essential nature of which is summarized in the following axiom: 

There exists a form of energy, known as internal energy U, which is an 
intrinsic property of a system, functionally related to the measurable 
coordinates which characterize the system. For a closed system, not 
in motion, changes in this property are given by Eqs. (2.5) and (2.6). 
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2.5 THERMODYNAMIC STATE AND STATE FUNCTIONS 

The notation of Eqs. (2.3) through (2.6) suggests that the terms on the left are different in kind 
from those on the right. The internal-energy terms on the left reflect changes in the internal state 
or the thermodynamic state of the system. It is this state that is reflected by its thermodynamic 
properties, among which are temperature, pressure, and density. We know from experience 
that for a homogeneous pure substance fixing two of these properties automatically fixes all the 
others, and thus determines its thermodynamic state. For example, nitrogen gas at a temperature 
of 300 K and a pressure of 10' kPa (1 bar) has a fixed specific volume or density and a fixed 
molar internal energy. Indeed, it has an established set of intensive thermodynamic properties. If 
this gas is heated or cooled, compressed or expanded, and then returned to its initial temperature 
and pressure, its intensive properties are restored to their initial values. Such properties do not 
depend on the past history of the substance nor on the means by which it reaches a given state. 
They depend only on present conditions, however reached. Such quantities are known as state 
functions. When two of them are held at fixed values for a homogeneous pure ~ubstance,~ the 
thermodynamic state of the substance is fully determined. This means that a state function, such 
as specific internal energy, is a property that always has a value; it may therefore be expressed 
mathematically as a function of other thermodynamic properties, such as temperature and 
pressure, or temperature and density, and its values may be identified with points on a graph. 

On the other hand, the terms on the right sides of Eqs. (2.3) through (2.6), representing 
heat and work quantities, are not properties; they account for the energy changes that occur in 
the surroundings and appear only when changes occur in a system. They depend on the nature 
of the process causing the change, and are associated with areas rather than points on a graph, 
as suggested by Fig. 1.3. Although time is not a thermodynamic coordinate, the passage of 
time is inevitable whenever heat is transferred or work is accomplished. 

The differential of a state function represents an infinitesimal change in its value. Inte- 
gration of such a differential results in a finite difference between two of its values, e.g.: 

and 

The differentials of heat and work are not changes, but are infinitesimal amounts. When inte- 
grated, these differentials give not finite changes, but finite amounts. Thus, 

/ ~ Q = Q  and 1 d W = W  

3 ~ o r  systems more complex than a simple homogeneous pure substance, the number of properties or state functions 
that must be arbitrarily specified in order to define the state of the system may be different from two. The method of 
determining this number is the subject of Sec. 2.7. 
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For a closed system undergoing the same change in state by several processes, experiment 
shows that the amounts of heat and work required differ for different processes, but that the 
sum Q + W is the same for all processes. This is the basis for identification of internal energy 
as a state function. The same value of AU' is given by Eq. (2.3) regardless of the process, 
provided only that the change in the system is between the same initial and final states. 
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2.6 EQUILIBRIUM 

Equilibrium is a word denoting a static condition, the absence of change. In thermodynamics 
it means not only the absence of change but the absence of any tendency toward change on a 
macroscopic scale. Thus a system at equilibrium exists under conditions such that no change in 
state can occur. Since any tendency toward change is caused by a driving force of one kind or 
another, the absence of such a tendency indicates also the absence of any driving force. Hence 
for a system at equilibrium all forces are in exact balance. Whether a change actually occurs in 
a system not at equilibrium depends on resistance as well as on driving force. Many systems 
undergo no measurable change even under the influence of large driving forces, because the 
resistance to change is very large. 

Different kinds of driving forces tend to bring about different kinds of change. For 
example, imbalance of mechanical forces such as pressure on a piston tend to cause energy 
transfer as work; temperature differences tend to cause the flow of heat; gradients in chemical 
potential tend to cause substances to be transferred from one phase to another. At equilibrium 
all such forces are in balance. 

In many applications of thermodynamics, chemical reactions are of no concern. For 
example, a mixture of hydrogen and oxygen at ordinary conditions is not in chemical equi- 
librium, because of the large driving force for the formation of water. However, if chemical 
reaction is not initiated, this system can exist in long-term thermal and mechanical equilibrium, 
and purely physical processes may be analyzed without regard to possible chemical reaction. 
This is an example of the fact that systems existing at partial equilibrium are often amenable 
to thermodynamic analysis. 

2.7 THE PHASE RULE 

As indicated earlier, the state of a pure homogeneous fluid is fixed whenever two intensive 
thermodynamic properties are set at definite values. In contrast, when two phases are in equi- 
librium, the state of the system is fixed when only a single property is specified. For example, 
a mixture of steam and liquid water in equilibrium at 101.325 kPa can exist only at 373.15 K 
(100°C). It is impossible to change the temperature without also changing the pressure if vapor 
and liquid are to continue to exist in equilibrium. 

For any system at equilibrium, the number of independent variables that must be arbi- 
trarily fixed to establish its intensive state is given by the celebrated phase rule of J. Willard 
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~ i b b s ;  who deduced it by theoretical reasoning in 1875. It is presented here without proof in 
the form applicable to nonreacting systems:5 

1 ~ = 2 - n + N I  (2.7) 

where n is the number of phases, N is the number of chemical species, and F is called the 
degrees of freedom of the system. 

The intensive state of a system at equilibrium is established when its temperature, pres- 
sure, and the compositions of all phases are fixed. These are therefore phase-rule variables, but 
they are not all independent. The phase rule gives the number of variables from this set which 
must be arbitrarily specified to fix all remaining phase-rule variables. 

A phase is a homogeneous region of matter. A gas or a mixture of gases, a liquid or a 
liquid solution, and a crystalline solid are examples of phases. A phase need not be continuous; 
examples of discontinuous phases are a gas dispersed as bubbles in a liquid, a liquid dispersed 
as droplets in another liquid with which it is immiscible, and solid crystals dispersed in either 
a gas or liquid. In each case a dispersed phase is distributed throughout a continuous phase. An 
abrupt change in properties always occurs at the boundary between phases. Various phases can 
coexist, but they must be in equilibrium for the phase rule to apply. An example of a three-phase 
system at equilibrium is a saturated aqueous salt solution at its boiling point with excess salt 
crystals present. The three phases (n = 3) are crystalline salt, the saturated aqueous solution, 
and vapor generated at the boiling point. The two chemical species ( N  = 2) are water and salt. 
For this system, F = 1. 

The phase-rule variables are intensive properties, which are independent of the extent 
of the system and of the individual phases. Thus the phase rule gives the same information 
for a large system as for a small one and for different relative amounts of the phases present. 
Moreover, only the compositions of the individual phases are phase-rule variables. Overall or 
total compositions are not phase-rule variables when more than one phase is present. 

The minimum number of degrees of freedom for any system is zero. When F = 0 ,  the 
system is invariant; Eq. (2.7) becomes n = 2 + N .  This value of n is the maximum number 
of phases which can coexist at equilibrium for a system containing N chemical species. When 
N = 1, this number is 3, characteristic of a triple point (Sec. 3.1). For example, the triple point 
of water, where liquid, vapor, and the common form of ice exist together in equilibrium, occurs 
at 273.16 K (O.Ol°C) and 0.0061 bar. Any change from these conditions causes at least one 
phase to disappear. 

4~osiah Willard Gibbs (1839-1903), American mathematical physicist. 
 he justification of the phase rule for nonreacting systems is given in Sec. 10.2, and the phase rule for reacting 

systems is considered in Sec. 13.8. 
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2.8 THE REVERSIBLE PROCESS 

The development of thermodynamics is facilitated by introduction of a special kind of closed- 
system process characterized as reversible: 

A process is reversible when its direction can be reversed at any point 
by an infinitesimal change in external conditions. 

Reversible Expansion of a Gas 

The nature of reversible processes is illustrated by the example of a simple expansion of gas 
in a pistonlcylinder arrangement. The apparatus shown in Fig. 2.2 is imagined to exist in an 
evacuated space. The gas trapped inside the cylinder is chosen as the system; all else is the 
surroundings. Expansion processes result when mass is removed from the piston. For simplicity, 
assume that the piston slides within the cylinder without friction and that the piston and cylinder 
neither absorb nor transmit heat. Moreover, because the density of the gas in the cylinder is 
low and because the mass of gas is small, we ignore the effects of gravity on the contents of the 
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cylinder. This means that gravity-induced pressure gradients in the gas are very small relative 
to its pressure and that changes in potential energy of the gas are negligible in comparison with 
the potential-energy changes of the piston assembly. 

The piston in Fig. 2.2 confines the gas at a pressure just sufficient to balance the weight 
of the piston and all that it supports. This is a condition of equilibrium, for the system has no 
tendency to change. Mass must be removed from the piston if it is to rise. Imagine first that 
a mass m is suddenly slid from the piston to a shelf (at the same level). The piston assembly 
accelerates upward, reaching its maximum velocity at the point where the upward force on the 
piston just balances its weight. Its momentum then carries it to a higher level, where it reverses 
direction. If the piston were held in this position of maximum elevation, its potential-energy 
increase would very nearly equal the work done by the gas during the initial stroke. However, 
when unconstrained, the piston assembly oscillates, with decreasing amplitude, ultimately 
coming to rest at a new equilibrium position at a level above its initial position. 

Figure 2.2 Expansion of a gas 

The oscillations of the piston assembly are damped out because the viscous nature of the 
gas gradually converts gross directed motion of the molecules into chaotic molecular motion. 
This dissipative process transforms some of the work initially done by the gas in accelerating 
the piston back into internal energy of the gas. Once the process is initiated, no injinitesimal 
change in external conditions can reverse its direction; the process is irreversible. 

All processes carried out in finite time with real substances are accompanied in some 
degree by dissipative effects of one kind or another, and all are therefore irreversible. However, 
one can imagine processes that are free of dissipative effects. For the expansion process of 
Fig. 2.2, such effects have their origin in the sudden removal of a finite mass from the piston. 
The resulting imbalance of forces acting on the piston causes its acceleration, and leads to 
its subsequent oscillation. The sudden removal of smaller mass increments reduces but does 
not eliminate this dissipative effect. Even the removal of an infinitesimal mass leads to piston 
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oscillations of infinitesimal amplitude and a consequent dissipative effect. However, one may 
imagine a process wherein small mass increments are removed one after another at a rate such 
that the piston's rise is continuous, with minute oscillation only at the end of the process. 

The limiting case of removal of a succession of infinitesimal masses from the piston is 
approximated when the masses m in Fig. 2.2 are replaced by a pile of powder, blown in a very 
fine stream from the piston. During this process, the piston rises at a uniform but very slow 
rate, and the powder collects in storage at ever higher levels. The system is never more than 
differentially displaced from internal equilibrium or from equilibrium with its surroundings. 
If the removal of powder from the piston is stopped and the direction of transfer of powder is 
reversed, the process reverses direction and proceeds backwards along its original path. Both 
the system and its surroundings are ultimately restored to their initial conditions. The original 
process is reversible. 

Without the assumption of a frictionless piston, we cannot imagine a reversible process. 
If the piston sticks because of friction, a finite mass must be removed before the piston breaks 
free. Thus the equilibrium condition necessary to reversibility is not maintained. Moreover, 
friction between two sliding parts is a mechanism for the dissipation of mechanical energy into 
internal energy. 

This discussion has centered on a single closed-system process, the expansion of a gas in 
a cylinder. The opposite process, compression of a gas in a cylinder, is described in exactly the 
same way. There are, however, many processes which are driven by the imbalance of forces 
other than mechanical forces. For example, heat flow occurs when a temperature difference 
exists, electricity flows under the influence of an electromotive force, and chemical reactions 
occur because a chemical potential exists. In general, a process is reversible when the net force 
driving it is only differential in size. Thus heat is transferred reversibly when it flows from a 
finite object at temperature T to another such object at temperature T - d T .  

Reversible Chemical Reaction 
The concept of a reversible chemical reaction is illustrated by the decomposition of calcium 
carbonate, which when heated forms calcium oxide and carbon dioxide gas. At equilibrium, 
this system exerts a definite decomposition pressure of C02 for a given temperature. When 
the pressure falls below this value, CaC03 decomposes. Assume that a cylinder is fitted with 
a frictionless piston and contains CaC03, CaO, and C02 in equilibrium. It is immersed in a 
constant-temperature bath, as shown in Fig. 2.3, with the temperature adjusted to a value such 
that the decomposition pressure is just sufficient to balance the weight on the piston. The system 
is in mechanical equilibrium, the temperature of the system is equal to that of the bath, and 
the chemical reaction is held in balance by the pressure of the C02. Any change of conditions, 
however slight, upsets the equilibrium and causes the reaction to proceed in one direction or 
the other. 

If the weight is differentially increased, the C02 pressure rises differentially, and COz 
combines with CaO to form CaC03, allowing the weight to fall slowly. The heat given off by 
this reaction raises the temperature in the cylinder, and heat flows to the bath. Decreasing the 
weight differentially sets off the opposite chain of events. The same results are obtained if the 
temperature of the bath is raised or lowered. If the temperature of the bath is raised differentially, 
heat flows into the cylinder and calcium carbonate decomposes. The C02 generated causes the 
pressure to rise differentially, which in turn raises the piston and weight. This continues until the 
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I I 

Figure 2.3 Reversibility of a chemical reaction 

CaC03 is completely decomposed. The process is reversible, for the system is never more than 
differentially displaced from equilibrium, and only a differential lowering of the temperature 
of the bath causes the system to return to its initial state. 

Chemical reactions can sometimes be carried out in an electrolytic cell, and in this case 
they may be held in balance by an applied potential difference. If such a cell consists of 
two electrodes, one of zinc and the other of platinum, immersed in an aqueous solution of 
hydrochloric acid, the reaction that occurs is: 

Zn + 2HC1+ Hz + ZnC12 

The cell is held under fixed conditions of temperature and pressure, and the electrodes are con- 
nected externally to a potentiometer. If the electromotive force produced by the cell is exactly 
balanced by the potential difference of the potentiometer, the reaction is held in equilibrium. 
The reaction may be made to proceed in the forward direction by a slight decrease in the op- 
posing potential difference, and it may be reversed by a corresponding increase in the potential 
difference above the emf of the cell. 

Summary Remarks on Reversible Processes 

A reversible process: 

Is frictionless 

Is never more than differentially removed from equilibrium 

Traverses a succession of equilibrium states 

Is driven by forces whose imbalance is differential in magnitude 
Can be reversed at any point by a differential change in external conditions 

When reversed, retraces its forward path, and restores the initial state of system and 
surroundings 

The work of compression or expansion of a gas caused by the differential displacement 
of a piston in a cylinder is derived in Sec. 1.7: 

d w  = - p d v t  (1.2) 
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The work done on the system is given by this equation only when certain characteristics of 
the reversible process are realized. The first requirement is that the system be no more than 
infinitesimally displaced from a state of internal equilibrium characterized by uniformity of 
temperature and pressure. The system then always has an identifiable set of properties, including 
pressure P.  The second requirement is that the system be no more than infinitesimally displaced 
from mechanical equilibrium with its surroundings. In this event, the internal pressure P is never 
more than minutely out of balance with the external force, and we may make the substitution 
F = P A  that transforms Eq. (1.1) into Eq. (1.2). Processes for which these requirements are 
met are said to be mechanically reversible, and Eq. (1.2) may be integrated: 

The reversible process is ideal in that it can never be fully realized; it represents a limit 
to the performance of actual processes. In thermodynamics, the calculation of work is usually 
made for reversible processes, because of their tractability to mathematical analysis. The choice 
is between these calculations and no calculations at all. Results for reversible processes in 
combination with appropriate eficiencies yield reasonable approximations of the work for 
actual processes. 
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2.9 CONSTANT-V AND CONSTANT-P PROCESSES 

The energy balance for a homogeneous closed system of n moles is: 

d(nU) = d Q  + d W  (2.6) 

where Q and W always represent total heat and work, whatever the value of n. 
The work of a mechanically reversible, closed-system process is given by Eq. (1.2), here 

written: 
dW = -Pd(nV) 

These two equations combine: 
d(nU) = d Q  - P d(nV) 

This is the general first-law equation for a mechanically reversible, closed-system process. 

Constant-Volume Process 

If the process occurs at constant total volume, the work is zero. Moreover, for closed systems 
the last term of Eq. (2.8) is also zero, because n and V are both constant. Thus, 

d Q = d(nU) (const V) (2.9) 

Integratioli yields: 
Q = n AU (const V) (2.10) 
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Thus for a mechanically reversible, constant-volume, closed-system process, the heat trans- 
ferred is equal to the internal-energy change of the system. 

Constant-Pressure Process 

Solved for d Q, Eq. (2.8) becomes: 

d Q  = d(nU) + P d(nV) 

For a constant-pressure change of state: 

d Q  = d(nU) +d(nPV) = d[n(U + PV)] 

The appearance of the group U+ P V, both here and in other applications, suggests the dejinition 
for convenience of a new thermodynamic property. Thus, the mathematical (and only) dejinition 
of enthalpy (en-thal'-py)6 is: 

where H ,  U ,  and V are molar or unit-mass values. The preceding equation may now be written: 

d Q = d(nH) (const P)  (2.12) 

Integration yields: 

Q = n A H  (const P )  (2.13) 

Thus for a mechanically reversible, constant-pressure, closed-system process, the heat trans- 
ferred equals the enthalpy change of the system. Comparison of the last two equations with 
Eqs. (2.9) and (2.10) shows that the enthalpy plays a role in constant-pressure processes anal- 
ogous to the internal energy in constant-volume processes. 

2.1 0 ENTHALPY 

The usefulness of the enthalpy is suggested by Eqs. (2.12) and (2.13). It also appears in energy 
balances for flow processes as applied to heat exchangers, evaporators, distillation columns, 
pumps, compressors, turbines, engines, etc., for calculation of heat and work. 

The tabulation of values of Q and W for the infinite array of possible processes is 
impossible. The intensive state functions, however, such as specific volume, specific internal 
energy, and specific enthalpy, are intrinsic properties of matter. Once determined, their values 
can be tabulated as functions of temperature and pressure for each phase of a particular substance 
for future use in the calculation of Q and W for any process involving that substance. The 
determination of numerical values for these state functions and their correlation and use are 
treated in later chapters. 

All terms of Eq. (2.11) must be expressed in the same units. The product P V has units of 
energy per mole or per unit mass, as does U; therefore H also has units of energy per mole or 

6~ word proposed by H. Kamerlingh Onnes, Dutch physicist who first liquefied helium in 1908, discovered 
superconductivity in 1911, and won the Nobel prize for physics in 1913. (See: Communications from the Physical 
Laboratory of the University of Leiden, no. 109, p. 3, footnote 2, 1909.) 
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per unit mass. In the SI system the basic unit of pressure is the pascal or N mP2 and, for molar 
volume, m3 mol-'. The PV product then has the units N m mol-' or J mol-l. In the metric 
engineering system a common unit for the P V product is the m kgf kg-', which arises when 
pressure is in kg m-2 with volume in m3 kg-'. This result is usually converted to kcal kg-' 
through division by 426.935 for use in Eq. (2.1 I), because the common metric engineering unit 
for U and H is the kcal kg-'. 

Since U ,  P ,  and V are all state functions, H as defined by Eq. (2.11) is also a state 
function. Like U and V, H is an intensive property of the system. The differential form of 
Eq. (2.11) is: 

This equation applies whenever a differential change occurs in the system. Upon integration, 
it becomes an equation for a finite change in the system: 

Equations (2.1 I), (2.14), and (2.15) apply to a unit mass of substance or to a mole. 
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2.11 HEATCAPACITY 

We remarked earlier that heat is often viewed in relation to its effect on the object to which or 
from which it is transferred. This is the origin of the idea that a body has a capacity for heat. 
The smaller the temperature change in a body caused by the transfer of a given quantity of 
heat, the greater its capacity. Indeed, a heat capacity might be defined: 

The difficulty with this is that it makes C, like Q, a process-dependent quantity rather than a 
state function. However, it does suggest the possibility that more than one useful heat capacity 
might be defined. In fact two heat capacities are in common use for homogeneous fluids; 
although their names belie the fact, both are state functions, defined unambiguously in relation 
to other state functions. 

Heat Capacity at Constant Volume 

The constant-volume heat capacity is dejined as: 

This definition accommodates both the molar heat capacity and the specific heat capacity 
(usually called specific heat), depending on whether U is the molar or specific internal energy. 
Although this definition makes no reference to any process, it relates in an especially simple 
way to a constant-volume process in a closed system, for which Eq. (2.16) may be written: 

dU = Cv d T  (const V) (2.17) 

Integration yields: 

The combination of this result with Eq. (2.10) for a mechanically reversible, constant-volume 
process7 gives: 

If the volume varies during the process but returns at the end of the process to its initial 
value, the process cannot rightly be called one of constant volume, even though V2 = Vl and 
A V = 0. However, changes in state functions or properties are independent of path, and are the 
same for all processes which result in the same change of state. Property changes are therefore 

7 ~ h e s e  restrictions serve to rule out work of stimng, which is inherently irreversible 
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calculated from the equations for a truly constant-volume process leading from the same initial 
to the same final conditions. For such processes Eq. (2.18) gives AU = 1 Cv d T ,  because U ,  
C v ,  and T are all state functions or properties. On the other hand, Q does depend on path, and 
Eq. (2.19) is a valid expression for Q only for a constant-volume process. For the same reason, 
W is in general zero only for a truly constant-volume process. This discussion illustrates the 
reason for the careful distinction between state functions and heat and work. The principle that 
state functions are independent of the process is an important and useful concept. 

For the calculation of property changes, an actual process may be 
replaced by any other process which accomplishes the same change 
in state. 

Such an alternative process may be selected, for example, because of its simplicity. 

Heat Capacity at Constant Pressure 

The constant-pressure heat capacity is dejined as: 

Again, the definition accommodates both molar and specific heat capacities, depending on 
whether H is the molar or specific enthalpy. This heat capacity relates in an especially simple 
way to a constant-pressure, closed-system process, for which Eq. (2.20) is equally well written: 

d H = C p  d T (const P )  (2.21) 

whence 

For a mechanically reversible, constant-pressure process, this result may be combined with 
Eq. (2.13) to give 

Q = n A H  = n C p d T  (const P )  L: 
Since H ,  C p ,  and T are all state functions, Eq. (2.22) applies to any process for which P2 = PI 
whether or not it is actually carried out at constant pressure. However, only for the mechani- 
cally reversible, constant-pressure process can heat and work be calculated by the equations 
~ = n ~ H , ~ = n l C p d ~ , a n d W  = - P n A V .  
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2.12 MASS AND ENERGY BALANCES FOR OPEN SYSTEMS 

Although the focus of the preceding sections has been on closed systems, the concepts presented 
find far more extensive application. The laws of mass and energy conservation apply to all 
processes, to open as well as to closed systems. Indeed, the open system includes the closed 
system as a special case. The remainder of this chapter is therefore devoted to the treatment of 
open systems and thus to the development of equations of wide applicability. 

Measures of Flow 

Open systems are characterized by flowing streams, for which there are four common measures 
of flow: 

Mass flowrate, m Molar flowrate, n Volumetric flowrate, q Velocity, u 

The measures of flow are interrelated: 

m = M n  and q = u A  

where M is molar mass. Importantly, mass and molar flowrates relate to velocity: 

The area for flow A is the cross-sectional area of a conduit, and p is specific or molar 
density. Although velocity is a vector quantity, its scalar magnitude u is used here as the average 
speed of a stream in the direction normal to A. Flowrates m, n,  and q represent measures of 
quantity per unit of time. Velocity u is quite different in nature, as it does not suggest the 
magnitude of flow. Nevertheless, it is an important design parameter. 

Mass Balance for Open Systems 

The region of space identified for analysis of open systems is called a control volume; it is 
separated from its surroundings by a control suface. The fluid within the control volume is the 
thermodynamic system for which mass and energy balances are written. The control volume 
shown schematically in Fig. 2.5 is separated from its surroundings by an extensible control 
surface. Two streams with flow rates ml  and m2 are shown directed into the control volume, 
and one stream with flow rate m3 is directed out. Since mass is conserved, the rate of change of 
mass within the control volume, dm,,/dt, equals the net rate of flow of mass into the control 
volume. The convention is that flow is positive when directed into the control volume and 
negative when directed out. The mass balance is expressed mathematically by: 

where the second term for the control volume shown in Fig. 2.5 is: 
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Figure 2.5 Schematic representation of a control volume 

The difference operator "A" here signifies the difference between exit and entrance flows and 
the subscript "fs" indicates that the term applies to all flowing streams. 

When the mass flowrate m is given by Eq. (2.24a), Eq. (2.25) becomes: 

In this form the mass-balance equation is often called the continuity equation. 
The flow process characterized as steady state is an important special case for which 

conditions within the control volume do not change with time. The control volume then contains 
a constant mass of fluid, and the first or accumulation term of Eq. (2.25) is zero, reducing 
Eq. (2.26) to: 

The term "steady state" does not necessarily imply that flowrates are constant, merely that the 
inflow of mass is exactly matched by the outflow of mass. 

When there is but a single entrance and a single exit stream, the mass flowrate riz is the 
same for both streams; then, 

or m = const = p2u2A2 = plu lA l  

Since specific volume is the reciprocal of density, 

This form of the continuity equation finds frequent use. 

The General Energy Balance 

Since energy, like mass, is conserved, the rate of change of energy within the control volume 
equals the net rate of energy transfer into the control volume. Streams flowing into and out 
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of the control volume have associated with them energy in its internal, potential, and kinetic 
forms, and all contribute to the energy change of the system. Each unit mass of a stream qarries 
with it a total energy U  + i u2  + zg, where u is the average velocity of the stream, z is its 
elevation above a datum level, and g is the local acceleration of gravity. Thus, each stream 
transports energy at the rate (U + i u2  + zg)m. The net energy transported into the system 
by the flowing streams is therefore -A [(u + i u 2  + zg) mIfs, where the effect of the minus 
sign with "A" is to make the term read in - out. The rate of energy accumulation within 
the control volume includes this quantity in addition to the heat transfer rate Q and work 
rate: 

. A  [ (u + ;u2 + zg) h]f, + Q + work rate 

The work rate may include work of several forms. First, work is associated with moving 
the flowing streams through entrances and exits. The fluid at any entrance or exit has a set of 
average properties, P ,  V, U ,  H, etc. Imagine that a unit mass of fluid with these properties 
exists at an entrance or exit, as shown in Fig. 2.6 (at the entrance). This unit mass of fluid is 
acted upon by additional fluid, here replaced by a piston which exerts the constant pressure 
P .  The work done by this piston in moving the unit mass through the entrance is P V, and the 
work rate is (PV)m. Since "A" denotes the difference between exit and entrance quantities, 
the net work done on the system when all entrance and exit sections are taken into account is 
- A [ ( P  v)mlfs. 

Another form of work is the shaft work indicated in Fig. 2.6 by rate W,. In addition 
work may be associated with expansion or contraction of the control volume and there may 
be stirring work. These forms of work are all included in a rate term represented by W .  The 
preceding equation may now be written: 

Figure 2.6 Control volume with one entrance and one exit 
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Combination of terms in accord with the definition of enthalpy, H  = U + P V, leads to: 

d(mu)cv = - A [ ( H  + iu2  + ~ g ) h ] ~ +  Q +  W 
d t  

which is usually written: 

The velocity u in the kinetic-energy terms of energy balances is the bulk-mean velocity 
as defined by the equation, u = m/pA. Fluids flowing in pipes exhibit a velocity profile, as 
shown in Fig. 2.6, which rises from zero at the wall (the no-slip condition) to a maximum at 
the center of the pipe. The kinetic energy of a fluid in a pipe depends on its velocity profile. For 
the case of laminar flow, the profile is parabolic, and integration across the pipe shows that the 
kinetic-energy term should properly be u2. In fully developed turbulent flow, the more common 
case in practice, the velocity across the major portion of the pipe is not far from uniform, and 
the expression u2/2, as used in the energy equations, is more nearly correct. 

Although Eq. (2.28) is an energy balance of reasonable generality, it has limitations. 
In particular, it reflects the tacit assumption that the center of mass of the control volume is 
stationary. Thus no terms for kinetic- and potential-energy changes of the fluid in the control 
volume are included. For virtually all applications of interest to chemical engineers, Eq. (2.28) 
is adequate. For many (but not all) applications, kinetic- and potential-energy changes in the 
flowing streams are also negligible, and Eq. (2.28) then simplifies to: 

Equation (2.29) may be applied to a variety of processes of atransient nature, as illustrated 
in the following examples. 
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Energy Balances for Steady-State Flow Processes 

Flow processes for which the accumulation term of Eq. (2.28), d(rnU),,/dt, is zero are said to 
occur at steady state. As discussed with respect to the mass balance, this means that the mass 
of the system within the control volume is constant; it also means that no changes occur with 
time in the properties of the fluid within the control volume nor at its entrances and exits. No 
expansion of the control volume is possible under these circumstances. The only work of the 
process is shaft work, and the general energy balance, Eq. (2.28), becomes: 

Although "steady state" does not necessarily imply "steady flow," the usual application of 
this equation is to steady-state, steady-flow processes, because such processes represent the 
industrial norm.8 

* ~ n  example of a steady-state process that is not steady flow is a water heater in which variations in flow rate are 
exactly compensated by changes in the rate of heat transfer so that temperatures throughout remain constant. 
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A further specialization results when the control volume has but one entrance and one 
exit. The same mass flowrate m then applies to both streams, and Eq. (2.30) then reduces to: 

where subscript "fs" has been omitted in this simple case and "A" denotes the change from 
entrance to exit. Division by m gives: 

This equation is the mathematical expression of the first law for a steady-state, steady-flow 
process between one entrance and one exit. All terms represent energy per unit mass of fluid. 

In all of the energy-balance equations so far written, the energy unit is presumed to be 
the joule, in accord with the SI system of units. For the metric engineering system of units, the 
kinetic- and potential-energy terms, wherever they appear, require division by the dimensional 
constant g, (Secs. 1.4 and 1.8). In this event Eq. (2.32a), for example, is written: 

Here, the usual unit for A H  and Q is the kcal; kinetic energy, potential energy, and work are 
usually expressed as (ft lbf). Therefore the factor 426.935 m kgf kcal-' must be used with the 
appropriate terms to put them all in consistent units of either m kgf or kcal. 

In many applications, kinetic- and potential-energy terms are omitted, because they are 
negligible compared with other termsg For such cases, Eqs. (2.32a) and (2.32b) reduce to: 

This expression of the first law for a steady-state, steady-flow process is analogous to Eq. (2.3) 
for a nonflow process. However, enthalpy rather than internal energy is the thermodynamic 
property of importance. 

A Flow Calorimeter for Enthalpy Measurements 

The application of Eqs. (2.32) and (2.33) to the solution of practical problems requires enthalpy 
values. Since H is a state function and a property of matter, its values depend only on point 
conditions; once determined, they may be tabulated for subsequent use whenever the same sets 
of conditions are encountered. To this end, Eq. (2.33) may be applied to laboratory processes 
designed specifically to measure enthalpy data. 

A simple flow calorimeter is illustrated schematically in Fig. 2.7. Its essential feature 
is an electric resistance heater immersed in a flowing fluid. The design provides for minimal 

' ~ x c e ~ t i o n s  are applications to nozzles, metering devices, wind tunnels, and hydroelectric power stations. 
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Figure 2.7 Flow calorimeter 

velocity and elevation changes from section 1 to section 2, making kinetic- and potential-energy 
changes of the fluid negligible. Furthermore, no shaft work is accomplished between sections 1 
and 2. Hence Eq. (2.33) reduces to: 

The rate of heat transfer to the fluid is determined from the resistance of the heater and the 
current passing through it. In practice a number of details need attention, but in principle the 
operation of the flow calorimeter is simple. Measurements of the heat rate and the rate of flow 
of the fluid allow calculation of values of A H  between sections 1 and 2. 

As an example, consider the measurement of enthalpies of HzO, both as liquid and as 
vapor. Liquid water is supplied to the apparatus. The constant-temperature bath is filled with a 
mixture of crushed ice and water to maintain a temperature of 273.15 K (0°C). The coil which 
carries water through the constant-temperature bath is long enough so that the fluid emerges 
essentially at the bath temperature of 273.15 K (0°C). Thus the fluid at section 1 is always liquid 
water at 273.15 K (0°C). The temperature and pressure at section 2 are measured by suitable 
instruments. Values of the enthalpy of H20 for various conditions at section 2 are given by: 

where Q is the heat added per unit mass of water flowing. 
Clearly, Hz depends not only on Q but also on H I .  The conditions at section 1 are always 

the same, i.e., liquid water at 273.15 K (O°C), except that the pressure varies from run to run. 
However, pressure in the range encountered here has a negligible effect on the properties of 
liquids, and for practical purposes HI  is a constant. Absolute values of enthalpy, like absolute 
values of internal energy, are unknown. An arbitrary value may therefore be assigned to H1 as 
the basis for all other enthalpy values. Setting HI = 0 for liquid water at 273.15 K (PC)  makes: 

Enthalpy values may be tabulated for the temperatures and pressures existing at section 2 
for a large number of runs. In addition, specific-volume measurements made for these same 
conditions may be added to the table, along with corresponding values of the internal energy 
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calculated by Eq. (2.11), U = H - P V .  In this way tables of thermodynamic properties are 
compiled over the entire useful range of conditions. The most widely used such tabulation is 
for H 2 0  and is known as the steam tables.1° 

The enthalpy may be taken as zero for some other state than liquid at 273.15 K (0°C). The 
choice is arbitrary. The equations of thermodynamics, such as Eqs. (2.32) and (2.33), apply to 
changes of state, for which the enthalpy differences are independent of the location of the zero 
point. However, once an arbitrary zero point is selected for the enthalpy, an arbitrary choice 
cannot be made for the internal energy, for values of internal energy are then calculable from 
the enthalpy by Eq. (2.11). 

lostearn tables are given in App. F. Tables for various other substances are found in the literature. A discussion of 
compilations of thermodynamic properties appears in Chap. 6. 
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PROBLEMS 

2.1. A nonconducting container filled with 25 kg of water at 293.15 K (20°C) is fitted with 
a stirrer, which is made to turn by gravity acting on a weight of mass 35 kg. The weight 
falls slowly through a distance of 5 m in driving the stirrer. Assuming that all work done 
on the weight is transferred to the water and that the local acceleration of gravity is 
9.8 m sp2, determine: 

(a)  The amount of work done on the water. 
(6)  The internal-energy change of the water. 
(c )  The final temperature of the water, for which C p  = 4.18 kJ kg-' 'C-'. 
( d )  The amount of heat that must be removed from the water to return it to its initial 

temperature. 
(e)  The total energy change of the universe because of (1) the process of lowering the 

weight, (2)  the process of cooling the water back to its initial temperature, and (3) 
both processes together. 

2.2. Rework Prob. 2.1 for an insulated container that changes in temperature along with the 
water and has a heat capacity equivalent to 5 kg of water. Work the problem with: 

(a)  The water and container as the system; (b)  The water alone as the system. 

2.3. An egg, initially at rest, is dropped onto a concrete surface and breaks. With the egg 
treated as the system, 

(a )  What is the sign of W? 
(b) What is the sign of A Ep? 
(c)  What is AEK? 
( d )  What is AU'? 
(e )  What is the sign of Q? 
In modeling this process, assume the passage of sufficient time for the broken egg to 
return to its initial temperature. What is the origin of the heat transfer of part (e)? 

2.4. An electric motor under steady load draws 9.7 amperes at 110 volts, delivering 0.93 kW 
of mechanical energy. What is the rate of heat transfer from the motor, in kW? 
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2.5. One mole of gas in a closed system undergoes a four-step thermodynamic cycle. Use 
the data given in the following table to determine numerical values for the missing 
quantities, i.e., "fill in the blanks." 

2.6. Comment on the feasibility of cooling your kitchen in the summer by opening the door 
to the electrically powered refrigerator. 

Step 

12 
23 
34 
41 

12341 

2.7. A renowned laboratory reports quadruple-point coordinates of 10.2 Mbar and 297.25 K 
(24.1°C) for four-phase equilibrium of allotropic solid forms of the exotic chemical 
8-miasmone. Evaluate the claim. 

2.8. A closed, nonreactive system contains species 1 and 2 in vaporlliquid equilibrium. 
Species 2 is a very light gas, essentially insoluble in the liquid phase. The vapor phase 
contains both species 1 and 2. Some additional moles of species 2 are added to the 
system, which is then restored to its initial T and P. As a result of the process, does the 
total number of moles of liquid increase, decrease, or remain unchanged? 

AUtlJ 

-200 
? 
? 

4700 

? 

2.9. A system comprised of chloroform, 1,4-dioxane, and ethanol exists as a two-phase 
vaporlliquid system at 323.15 K (50°C) and 55 kPa. It is found, after the addition of 
some pure ethanol, that the system can be returned to two-phase equilibrium at the initial 
T and P .  In what respect has the system changed, and in what respect has it not changed? 

2.10. For the system described in Pb. 2.9: 

(a) How many phase-rule variables in addition to T and P must be chosen so as to fix 
the compositions of both phases? 

(b) If the temperature and pressure are to remain the same, can the overall composition 
of the system be changed (by adding or removing material) without affecting the 
compositions of the liquid and vapor phases? 

QIJ 

? 
-3800 
-800 

? 

? 

2.11. A tank containing 20 kg of water at 293.15 K (20°C) is fitted with a stirrer that delivers 
work to the water at the rate of 0.25 kW. How long does it take for the temperature of 
the water to rise to 303.15 K (30°C) if no heat is lost from the water? For water, C p  = 
4.18 k~ kg-' "c-' . 

WIJ 

-6000 
? 

300 
? 

-1400 

2.12. Heat in the amount of 7.5 kJ is added to a closed system while its internal energy 
decreases by 12 kJ. How much energy is transferred as work? For a process causing the 
same change of state but for which the work is zero, how much heat is transferred? 

2.13. A steel casting weighing 2 kg has an initial temperature of 773.15 K (500°C); 40 kg 
of water initially at 298.15 K (25°C) is contained in a perfectly insulated steel tank 
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weighing 5 kg. The casting is immersed in the water and the system is allowed to come to 
equilibrium. What is its final temperature? Ignore any effect of expansion or contraction, 
and assume constant specific heats of 4.18 kJ kg-' K-' for water and 0.50 kJ kgp1 K-I 
for steel. 

2.14. An incompressible fluid (p = constant) is contained in an insulated cylinder fitted with 
a frictionless piston. Can energy as work be transferred to the fluid? What is the change 
in internal energy of the fluid when the pressure is increased from PI to P2? 

2.15. One kg of liquid water at 298.15 K (25°C): 

(a) Experiences a temperature increase of 1 K. What is A U t ,  in kJ? 
(6) Experiences a change in elevation Az. The change in potential energy A E p  is the 

same as AU' for part (a). What is Az ,  in meters? 
(c) IS accelerated from rest to final velocity u. The change in kinetic energy A E K  is the 

same as AUt for part (a). What is u, in m s-'? 

Compare and discuss the results of the three preceding parts. 

2.16. An electric motor runs "hot7' under load, owing to internal irreversibilities. It has been 
suggested that the associated energy loss be minimized by thermally insulating the motor 
casing. Comment critically on this suggestion. 

2.17. A hydroturbine operates with a head of 50 m of water. Inlet and outlet conduits are 
2 m in diameter. Estimate the mechanical power developed by the turbine for an outlet 
velocity of 5 m s-' . 

2.18. Liquid water at 453.15 K (180°C) and 1002.7 kPa has an internal energy (on an arbitrary 
scale) of 762.0 kJ kg-' and a specific volume of 1.128 cm3 g-' . 
(a) What is its enthalpy? 
(b) The water is brought to the vapor state at 573.15 K (300°C) and 1500 kPa, where its 

internal energy is 2784.4 kJ kgp' and its specific volume is 169.7 cm3 g-'. Calculate 
AU and A H  for the process. 

2.19. A solid body at initial temperature To is immersed in a bath of water at initial temperature 
T,,. Heat is transferred from the solid to the water at a rate Q = K . (T, - T), where 
K is a constant and T, and T are instantaneous values of the temperatures of the water 
and solid. Develop an expression for T as a function of time t. Check your result for 
the limiting cases, t = 0 and t = oo. Ignore effects of expansion or contraction, and 
assume constant specific heats for both water and solid. 

2.20. A list of common unit operations follows: 
(a) Single-pipe heat exchanger; (b) Double-pipe heat exchanger; (c) Pump; 
(d) Gas compressor: ( e )  Gas turbine; ( f )  Throttle valve: (g) Nozzle. 

Develop a simplified form of the general steady-state energy balance appropriate for 
each operation. State carefully, and justify, any assumptions you make. 

2.21. The Reynolds number Re is a dimensionless group which characterizes the intensity 
of a flow. For large Re, a flow is turbulent; for small Re, it is laminar. For pipe flow, 
Re - upD/p, where D is pipe diameter and p is dynamic viscosity. 



Problems 55 

(a )  If D and p are fixed, what is the effect of increasing mass flowrate riz on Re? 
(b) If m and p are fixed, what is the effect of increasing D on Re? 

2.22. An incompressible ( p  = constant) liquid flows steadily through a conduit of circular 
cross-section and increasing diameter. At location 1, the diameter is 2.5 cm and the 
velocity is 2 m s-' ; at location 2, the diameter is 5 cm. 

(a )  What is the velocity at location 2? 
(b) What is the kinetic-energy change (J kg

p

') of the fluid between locations 1 and 2? 

2.23. A stream of warm water is produced in a steady-flow mixing process by combining 
1.0 kg s-' of cool water at 298.15 K (25°C) with 0.8 kg s-' of hot water at 348.15 K 
(75°C). During mixing, heat is lost to the surroundings at the rate of 30 kW. What is the 
temperature of the warm-water stream? Assume the specific heat of water constant at 
4.18 kJ kg

p

' K-'. 

2.24. Gas is bled from a tank. Neglecting heat transfer between the gas and the tank, show 
that mass and energy balances produce the differential equation: 

dU 
- 

dm - - - 
H I - U  m 

Here, U and m refer to the gas remaining in the tank; H' is the specific enthalpy of the 
gas leaving the tank. Under what conditions can one assume H' = H ?  

2.25. Water at 301.15 K (28°C) flows in a straight horizontal pipe in which there is no exchange 
of either heat or work with the surroundings. Its velocity is 14 m s-' in a pipe with an 
internal diameter of 2.5 cm until it flows into a section where the pipe diameter abruptly 
increases. What is the temperature change of the water if the downstream diameter is 
3.8 cm? If it is 7.5 cm]? What is the maximum temperature change for an enlargement 
in the pipe? 

2.26. Fifty (50) kmol per hour of air is compressed from PI = 1.2 bar to P2 = 6.0 bar in 
a steady-flow compressor. Delivered mechanical power is 98.8 kW. Temperatures and 
velocities are: 

Estimate the rate of heat transfer from the compressor. Assume for air that C p  = R 
and that enthalpy is independent of pressure. 

2.27. Nitrogen flows at steady state through a horizontal, insulated pipe with inside diameter 
of 38.1 mm. A pressure drop results from flow through a partially opened valve. Just 
upstream from the valve the pressure is 690kPa, the temperature is 322.15 K(49"C), 
and the average velocity is 6.09 m s

p

'. If the pressure just downstream from the valve 
is 138 kPa, what is the temperature? Assume for nitrogen that P V /  T is constant, Cv = 
(512) R, and C p  = (712) R. (Values for R are given in App. A.) 

2.28. Water flows through a horizontal coil heated from the outside by high-temperature flue 
gases. As it passes through the coil the water changes state from liquid at 200 kPa and 
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353.15 K (80°C) to vapor at 100 kPa and 398.15 K (125°C). Its entering velocity is 
3 m s-' and its exit velocity is 200 m s-'. Determine the heat transferred through the 
coil per unit mass of water. Enthalpies of the inlet and outlet streams are: 

Inlet: 334.9 kJ kg-'; Outlet: 2726.5 kJ kg-' 

2.29. Steam flows at steady state through a converging, insulated nozzle, 25 cm long and with 
an inlet diameter of 5 cm. At the nozzle entrance (state I), the temperature and pressure 
are 598.15 K (325°C) and 700 kPa, and the velocity is 30 m s-'. At the nozzle exit 
(state 2), the steam temperature and pressure are 5 13.15 K (240°C) and 350 kPa. Property 
values are: 

Hz = 2945.7 kJ kg-' V2 = 667.75 cm3 g-l 

What is the velocity of the steam at the nozzle exit, and what is the exit diameter? 

2.30. In the following take Cv = 20.8 and C p  = 29.1 J mol-' "C-' for nitrogen gas: 

(a) Three moles of nitrogen at 303.15 K (30°C), contained in a rigid vessel, is heated 
to 523.15 K (250°C). How much heat is required if the vessel has a negligible heat 
capacity? If the vessel weighs 100 kg and has a heat capacity of 0.5 kJ kg-' "c-', 
how much heat is required? 

(b) Four moles of nitrogen at 473.15 K (200°C) is contained in a pistodcylinder ar- 
rangement. How much heat must be extracted from this system, which is kept at 
constant pressure, to cool it to 313.15 K (40°C) if the heat capacity of the piston 
and cylinder is neglected? 

2.31. In the following take Cv = 21 and C p  = 29.3 kJ kmol-' K-I for nitrogen gas: 

(a) 1.5 kmol of nitrogen at 294.15 K(21°C) contained in a rigid vessel, is heated to 
450.15 K(177"C). How much heat is required if the vessel has a negligible heat 
capacity? If it weighs 90.7 kg and has a heat capacity of 0.5 kJ kg-' K-', how much 
heat is required? 

(b) 2 kmol of nitrogen at 447.15 K(174"C) is contained in apistodcylinder arrangement. 
How much heat must be extracted from this system, which is kept at constant 
pressure, to cool it to 338.15 K(65"C) if the heat capacity of the piston and cylinder 
is neglected? 

2.32. Find the equation for the work of a reversible, isothermal compression of 1 mol of gas 
in a pistonlcylinder assembly if the molar volume of the gas is given by 

where b and R are positive constants. 

2.33. Steam at 14 bar and 588.15 K(3 15°C) [state 11 enters a turbine through a 75 mm-diameter 
pipe with a velocity of 3 m s-' . The exhaust from the turbine is carried through a 250 mm- 
diameter pipe and is at 0.35 bar and 366.15 K(93"C) [state 21. What is the power output 
of the turbine? 

H1 = 3074.5 kJ kg-' Vl = 0.1909 m3 kg-' 
H2 = 2 8 7 1 . 6 ~  kg-' V2 = 4.878 m3 kg-' 



Problems 57 

2.34. Carbon dioxide gas enters a water-cooled compressor at the initial conditions P1 = 
1.04bar and TI = 284.15 K(lO°C) and is discharged at the final conditions P2 = 
35.8 bar and T2 = 366.15 K(93'C). The entering C02 flows through a 100 mm-diameter 
pipe with a velocity of 6 s m-', and is discharged through a 25 mm-diameter pipe. The 
shaft work supplied to the compressor is 12 500 kJ kmol-'. What is the heat-transfer 
rate from the compressor in kW? 

H1 = 714 kJ kg-' Vl = 0.5774 m3 kg-' 
H2 = 768 kJ kgp1 V2 = 0.0175 m3 kgp'. 

2.35. Show that W and Q for an arbitrary mechanically reversible nonflow process are given 
by: 

2.36. One kilogram of air is heated reversibly at constant pressure from an initial state of 
300 K and 1 bar until its volume triples. Calculate W, Q, AU, and AH for the process. 
Assume for air that P V/ T = 83.14 bar cm3 mol-' K-' and Cp = 29 J mol-' K-' . 

2.37. The conditions of a gas change in a steady-flow process from 293.15 K (20°C) and 
1000 kPa to 333.15 K (60°C) and 100 kPa. Devise a reversible nonflow process (any 
number of steps) for accomplishing this change of state, and calculate AU and AH for 
the process on the basis of 1 mol of gas. Assume for the gas that PV/T  is constant, 
Cv = (5/2)R, and Cp = (7/2)R. 


