
Chapter 5 

The Second Law of 
Thermodynamics 

Thermodynamics is concerned with transformations of energy, and the laws of thermodynamics 
describe the bounds within which these transformations are observed to occur. The first law 
reflects the observation that energy is conserved, but it imposes no restriction on the process 
direction. Yet, all experience indicates the existence of such a restriction, the concise statement 
of which constitutes the second law. 

The differences between the two forms of energy, heat and work, provide some insight 
into the second law. In an energy balance, both work and heat are included as simple additive 
terms, implying that one unit of heat, a joule, is equivalent to the same unit of work. Although 
this is true with respect to an energy balance, experience teaches that there is a difference of 
kind between heat and work. This experience is summarized by the following facts. 

Work is readily transformed into other forms of energy: for example, into potential energy 
by elevation of a weight, into kinetic energy by acceleration of a mass, into electrical energy by 
operation of a generator. These processes can be made to approach a conversion efficiency of 
100% by elimination of friction, a dissipative process that transforms work into heat. Indeed, 
work is readily transformed completely into heat, as demonstrated by Joule's experiments. 

On the other hand, all efforts to devise a process for the continuous conversion of heat 
completely into work or into mechanical or electrical energy have failed. Regardless of improve- 
ments to the devices employed, conversion efficiencies do not exceed about 40%. Evidently, 
heat is a form of energy intrinsically less useful and hence less valuable than an equal quantity 
of work or mechanical or electrical energy. 

Drawing further on our experience, we know that the flow of heat between two bodies 
always takes place from the hotter to the cooler body, and never in the reverse direction. This 
fact is of such significance that its restatement serves as an acceptable expression of the second 
law. 

5.1 STATEMENTS OF THE SECOND LAW 

The observations just described suggest a general restriction on processes beyond that imposed 
by the first law. The second law is equally well expressed in two statements that describe this 
restriction: 
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Statement 1: No apparatus can operate in such a way that its only effect (in system and 
surroundings) is to convert heat absorbed by a system completely into work done by the 
system. 

Statement 2: No process is possible which consists solely in the transfer of heat from 
one temperature level to a higher one. 

Statement 1 does not say that heat cannot be converted into work; only that the process 
cannot leave both the system and its surroundings unchanged. Consider a system consisting 
of an ideal gas in a pistodcylinder assembly expanding reversibly at constant temperature. 
According to Eq. (2.3), AUt = Q + W. For an ideal gas, AU" 0, and therefore, Q = -W. 
The heat absorbed by the gas from the surroundings is equal to the work transferred to the 
surroundings by the reversible expansion of the gas. At first this might seem a contradiction of 
statement 1, since in the surroundings the result is the complete conversion of heat into work. 
However, this statement requires in addition that no change occur in the system, a requirement 
that is not met. 

This process is limited in another way, because the pressure of the gas soon reaches that 
of the surroundings, and expansion ceases. Therefore, the continuous production of work from 
heat by this method is impossible. If the original state of the system is restored in order to 
comply with the requirements of statement 1, energy from the surroundings in the form of 
work is needed to compress the gas back to its original pressure. At the same time energy as 
heat is transferred to the surroundings to maintain constant temperature. This reverse process 
requires at least the amount of work gained from the expansion; hence no net work is produced. 
Evidently, statement 1 may be expressed in an alternative way, viz.: 

Statement la: It is impossible by a cyclic process to convert the heat absorbed by a 
system completely into work done by the system. 

The word cyclic requires that the system be restored periodically to its original state. In the case 
of a gas in a pistodcylinder assembly, its initial expansion and recompression to the original 
state constitute a complete cycle. If the process is repeated, it becomes a cyclic process. The 
restriction to a cyclic process in statement l a  amounts to the same limitation as that introduced 
by the words only effect in statement 1. 

The second law does not prohibit the production of work from heat, but it does place a 
limit on how much of the heat directed into a cyclic process can be converted into work done 
by the process. With the exception of water and wind power, the partial conversion of heat 
into work is the basis for nearly all commercial production of power. The development of a 
quantitative expression for the efficiency of this conversion is the next step in the treatment of 
the second law. 

5.2 HEAT ENGINES 

The classical approach to the second law is based on a macroscopic viewpoint of properties, 
independent of any knowledge of the structure of matter or behavior of molecules. It arose 
from the study of heat engines, devices or machines that produce work from heat in a cyclic 
process. An example is a steam power plant in which the working fluid (steam) periodically 
returns to its original state. In such a power plant the cycle (in its simplest form) consists of 
the following steps: 
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Liquid water at ambient temperature is pumped into a boiler at high pressure. 

Heat from a fuel (heat of combustion of a fossil fuel or heat from a nuclear reaction) is 
transferred in the boiler to the water, converting it to high-temperature steam at the boiler 
pressure. 
Energy is transferred as shaft work from the steam to the surroundings by a device such 
as a turbine, in which the steam expands to reduced pressure and temperature. 

Exhaust steam from the turbine is condensed by transfer of heat to the surroundings, 
producing liquid water for return to the boiler, thus completing the cycle. 

Essential to all heat-engine cycles are absorption of heat into the system at a high tem- 
perature, rejection of heat to the surroundings at a lower temperature, and production of work. 
In the theoretical treatment of heat engines, the two temperature levels which characterize their 
operation are maintained by heat reservoirs, bodies imagined capable of absorbing or rejecting 
an infinite quantity of heat without temperature change. In operation, the working fluid of a heat 
engine absorbs heat 1 QH I from a hot reservoir, produces a net amount of work I WI, discards 
heat I Qc I to a cold reservoir, and returns to its initial state. The first law therefore reduces to: 

The thermal eficiency of the engine is defined as: 

net work output 
q E? 

heat absorbed 

With Eq. (5.1) this becomes: 

IWl - I Q H I  - lQcl 
q - -  - 

I Q H I  I Q H I  

Absolute-value signs are used to make the equations independent of the sign conventions for 
Q and W. For q to be unity (100% thermal efficiency), I Qc 1 must be zero. No engine has ever 
been built for which this is true; some heat is always rejected to the cold reservoir. This result 
of engineering experience is the basis for statements 1 and l a  of the second law. 

If a thermal efficiency of 100% is not possible for heat engines, what then determines 
the upper limit? One would certainly expect the thermal efficiency of a heat engine to depend 
on the degree of reversibility of its operation. Indeed, a heat engine operating in a completely 
reversible manner is very special, and is called a Carnot engine. The characteristics of such an 
ideal engine were first described by N. L. S. Carnotl in 1824. The four steps that make up a 
Carnot cycle are performed in the following order: 

Step 1: A system at the temperature of a cold reservoir Tc undergoes a reversible adiabatic 
process that causes its temperature to rise to that of a hot reservoir at TH. 

Step 2: The system maintains contact with the hot reservoir at TH, and undergoes a 
reversible isothermal process during which heat ( Q H  I is absorbed from the hot reservoir. 

' ~ i c o l a s  Leonard Sadi Carnot (1796-1832), a French engineer. 
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Step 3: The system undergoes a reversible adiabatic process in the opposite direction of 
step 1 that brings its temperature back to that of the cold reservoir at Tc. 

Step 4: The system maintains contact with the reservoir at Tc, and undergoes a reversible 
isothermal process in the opposite direction of step 2 that returns it to its initial state with 
rejection of heat 1 Qc 1 to the cold reservoir. 

A Carnot engine operates between two heat reservoirs in such a way that all heat absorbed 
is absorbed at the constant temperature of the hot reservoir and all heat rejected is rejected at 
the constant temperature of the cold reservoir. Any reversible engine operating between two 
heat reservoirs is a Carnot engine; an engine operating on a different cycle must necessarily 
transfer heat across finite temperature differences and therefore cannot be reversible. 

Carnot's Theorem 

Statement 2 of the second law is the basis for Carnot's theorem: 

For two given heat reservoirs no engine can have a thermal efficiency 
higher than that of a Carnot engine. 
To prove Camot's theorem assume the existence of an engine E with a thermal efficiency 

greater than that of a Carnot engine which absorbs heat / QH I from the hot reservoir, produces 
work I W 1, and discards heat 1 QH I - ( W I to the cold reservoir. Engine E absorbs heat 1 Q L  I 
from the same hot reservoir, produces the same work I W 1, and discards heat I Q& 1 - I W I to the 
same cold reservoir. If engine E has the greater efficiency, 

IWI IWl 
- > -- and IQHI > lQ',I 
I IQHI 

Since a Carnot engine is reversible, it may be operated in reverse; the Carnot cycle is then 
traversed in the opposite direction, and it becomes a reversible refrigeration cycle for which 
the quantities 1 QH 1, 1 Qc 1, and I W I are the same as for the engine cycle but are reversed in 
direction. Let engine E drive the Carnot engine backward as a Carnot refrigerator, as shown 
schematically in Fig. 5.1. For the enginelrefrigerator combination, the net heat extracted from 
the cold reservoir is: 

IQHI - lWl - (IQLI - IWl>=  IQHI - lQLl 
The net heat delivered to the hot reservoir is also 1 QH 1 - 1 QLl.  Thus, the sole result of 
the enginelrefrigerator combination is the transfer of heat from temperature Tc to the higher 
temperature TH. Since this is in violation of statement 2 of the second law, the original premise 
that engine E has a greater thermal efficiency than the Carnot engine is false, and Carnot's 
theorem is proved. In similar fashion, one can prove that all Carnot engines operating between 
heat reservoirs at the same two temperatures have the same thermal efficiency. Thus a corollavy 
to Carnot's theorem states: 

The thermal efficiency of a Carnot engine depends only on the 
temperature levels and not upon the working substance of the engine. 

5.3 THERMODYNAMIC TEMPERATURE SCALES 

In the preceding discussion we identified temperature levels by the kelvin scale, established with 
ideal-gas thermometry. This does not preclude taking advantage of the opportunity provided 
by the Carnot engine to establish a thermodynamic temperature scale that is truly independent 
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Figure 5.1 Engine E operating a Carnot refrigerator C 

of any material properties. Let O  represent temperature on some empirical scale that unequiv- 
ocally identifies temperature levels. Consider two Carnot engines, one operating between a 
hot reservoir at temperature OH and a cold reservoir at temperature Oc,  and a second operating 
between the reservoir at Oc and a still colder reservoir at O F ,  as shown in Fig. 5.2. The heat 
rejected by the first engine 1 Qc 1 is absorbed by the second; therefore the two engines working 
together constitute a third Carnot engine absorbing heat I Q H  I from the reservoir at OH and 
rejecting heat 1 QF I to the reservoir at O F .  The corollary to Carnot's theorem indicates that the 
thermal efficiency of the first engine is a function of OH and Oc: 

Figure 5.2 Carnot engines 1 and 2 constitute a third Carnot engine 
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Rearrangement gives: 

where f is an unknown function. 
For the second and third engines, equations of the same functional form apply: 

IQcl 
- = f(Oc, OF) and 

I Q H I  
- = f(OH, OF) 

I Q F I  I Q F I  
Division of the second of these equations by the first gives: 

Comparison of this equation with Eq. (5.3) shows that the arbitrary temperature OF must cancel 
from the ratio on the right: 

where @ is another unknown function. 
The right side of Eq. (5.4) is the ratio of @s evaluated at two thermodynamic temperatures; 

the @s are to each other as the absolute values of the heats absorbed and rejected by a Carnot 
engine operating between reservoirs at these temperatures, quite independent of the properties 
of any substance. Moreover, Eq. (5.4) allows arbitrary choice of the empirical temperature 
represented by 0; once this choice is made, the function $ must be determined. If 0 is chosen 
as the kelvin temperature T, then Eq. (5.4) becomes: 

Ideal-Gas Temperature Scale; Carnot's Equations 

The cycle traversed by an ideal gas serving as the working fluid in a Carnot engine is shown 
by a PV diagram in Fig. 5.3. It consists of four reversible steps: 

a -+ b Adiabatic compression until the temperature rises from Tc to TH. 

b -+ c Isothermal expansion to arbitrary point c with absorption of heat I QH 1 .  
c + d Adiabatic expansion until the temperature decreases to Tc . 
d -+ a Isothermal compression to the initial state with rejection of heat I Qc I. 

For the isothermal steps b + c and d + a ,  Eq. (3.26) yields: 

vc 
l Q ~ l  = RTHln - and Vd 

IQcl = RTcln- 
Vb v a  

Therefore, 
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c 
Figure 5.3 P V  diagram showing Carnot cycle for an ideal gas 

For an adiabatic process Eq. (3.21) is written, 

For step a + b and c + d, integration gives: 

Since the left sides of these two equations are the same, 

Equation (5.6) now becomes: 

lQcl 

Comparison of this result with Eq. (5.5) yields the simplest possible functional relation for @, 
namely, $ ( T )  = T .  We conclude that the kelvin temperature scale, based on the properties of 
ideal gases, is in fact a thermodynamic scale, independent of the characteristics of any particular 
substance. Substitution of Eq. (5.7) into Eq. (5.2) gives: 
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Equations (5.7) and (5.8) are known as Carnot's equations. In Eq. (5.7) the smallest possible 
value of I Qc I is zero; the corresponding value of Tc is the absolute zero of temperature on the 
kelvin scale. As mentioned in Sec. 1.5, this occurs at (-273.1j°C). Equation (5.8) shows that the 
thermal efficiency of a Carnot engine can approach unity only when TH approaches infinity or 
Tc approaches zero. Neither of these conditions is attainable; all heat engines therefore operate 
with thermal efficiencies less than unity. The cold reservoirs naturally available on earth are 
the atmosphere, lakes and rivers, and the oceans, for which Tc E 300 K. Hot reservoirs are 
objects such as furnaces where the temperature is maintained by combustion of fossil fuels and 
nuclear reactors where the temperature is maintained by fission of radioactive elements. For 
these practical heat sources, TH E 600 K. With these values, 

This is a rough practical limit for the thermal efficiency of a Carnot engine; actual heat engines 
are irreversible, and their thermal efficiencies rarely exceed 0.35. 

5.4 ENTROPY 

Equation (5.7) for a Carnot engine may be written: 
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If the heat quantities refer to the engine (rather than to the heat reservoirs), the numerical 
value of QH is positive and that of Qc is negative. The equivalent equation written without 
absolute-value signs is therefore 

Thus for a complete cycle of a Carnot engine, the two quantities Q / T  associated with the 
absorption and rejection of heat by the working fluid of the engine sum to zero. The working 
fluid of a cyclic engine periodically returns to its initial state, and its properties, e.g., temperature, 
pressure, and internal energy, return to their initial values. Indeed, a primary characteristic of a 
property is that the sum of its changes is zero for any complete cycle. Thus for a Carnot cycle 
Eq. (5.9) suggests the existence of a property whose changes are given by the quantities Q/  T .  

Our purpose now is to show that Eq. (5.9), applicable to the reversible Carnot cycle, also 
applies to other reversible cycles. The closed curve on the P V diagram of Fig. 5.4 represents 
an arbitrary reversible cycle traversed by an arbitrary fluid. Divide the enclosed area by a series 
of reversible adiabatic curves; since such curves cannot intersect (Pb. 5.1), they may be drawn 
arbitrarily close to one another. Several such curves are shown on the figure as long dashed 
lines. Connect adjacent adiabatic curves by two short reversible isotherms which approximate 
the curve of the arbitrary cycle as closely as possible. The approximation clearly improves as 
the adiabatic curves are more closely spaced. When the separation becomes arbitrarily small, 
the original cycle is faithfully represented. Each pair of adjacent adiabatic curves and their 
isothermal connecting curves represent a Carnot cycle for which Eq. (5.9) applies. 

Each Carnot cycle has its own pair of isotherms TH and Tc and associated heat quantities 
QH and Qc. These are indicated on Fig. 5.4 for a representative cycle. When the adiabatic 
curves are so closely spaced that the isothermal steps are infinitesimal, the heat quantities 
become d Q H  and dQc,  and Eq. (5.9) for each Carnot cycle is written: 

In this equation TH and Tc, absolute temperatures of the working fluid of the Carnot engines, 
are also the temperatures traversed by the working fluid of the arbitrary cycle. Summation of 
all quantities d Q /  T for the Carnot engines leads to the integral: 

where the circle in the integral sign signifies integration over the arbitrary cycle, and the 
subscript "rev" indicates that the cycle is reversible. 

Thus the quantities d Q,,/ T sum to zero for the arbitrary cycle, exhibiting the charac- 
teristic of a property. We therefore infer the existence of a property whose differential changes 
for the arbitrary cycle are given by these quantities. The property is called entropy (en'-tro-py), 
and its differential changes are: 

d Qrev dSt = - 
T 
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Figure 5.4 An arbitrary reversible cyclic process drawn on a PV diagram 

where St is the total (rather than molar) entropy of the system. Alternatively, 

Points A and B on the P V diagram of Fig. 5.5 represent two equilibrium states of a particular 
fluid, and paths ACB and ADB show two arbitrary reversible processes connecting these 
points. Integration of Eq. (5.1 1) for each path gives: 

and = lDB T 
where in view of Eq. (5.10) the two integrals must be equal. We therefore conclude that A S t  

is independent of path and is a property change given by SL - S i .  
If the fluid is changed from state A to state B by an irreversible process, the entropy 

change must still be AS t  = S; - S i ,  but experiment shows that this result is not given by 
d  Q/ T evaluated for the irreversible process itself, because the calculation of entropy changes 

by this integral must in general be along reversible paths. 
The entropy change of a heat reservoir, however, is always given by Q/ T, where Q is 

the quantity of heat transferred to or from the reservoir at temperature T, whether the transfer 
is reversible or irreversible. The reason is that the effect of heat transfer on a heat reservoir is 
the same regardless of the temperature of the source or sink of the heat. 

If a process is reversible and adiabatic, d  Q,, = 0; then by Eq. (5.1 I), dS t  = 0. Thus the 
entropy of a system is constant during a reversible adiabatic process, and the process is said to 
be isentropic. 
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Figure 5.5 Two reversible paths joining equilibrium states A and B 

This discussion of entropy can be summarized as follows: 

Entropy owes its existence to the second law, from which it arises in much the same way 
as internal energy does from the first law. Equation (5.1 1) is the ultimate source of all 
equations that relate the entropy to measurable quantities. It does not represent a definition 
of entropy; there is none in the context of classical thermodynamics. What it provides is 
the means for calculating changes in this property. Its essential nature is summarized by 
the following axiom: 

There exists a property called entropy S, which is an intrinsic 
property of a system, functionally related to the measurable coor- 
dinates which characterize the system. For a reversible process, 
changes in this property are given by Eq. (5.1 1). 

The change in entropy of any system undergoing a finite reversible process is: 

When a system undergoes an irreversible process between two equilibrium states, the 
entropy change of the system ASf is evaluated by application of Eq. (5.13) to an arbitrarily 
chosen reversibleprocess that accomplishes the same change of state as the actual process. 
Integration is not carried out for the irreversible path. Since entropy is a state function, 
the entropy changes of the irreversible and reversible processes are identical. 

In the special case of a mechanically reversible process (Sec. 2.8), the entropy change 
of the system is correctly evaluated from l d Q/  T applied to the actual process, even though 
the heat transfer between system and surroundings is irreversible. The reason is that it is 
immaterial, as far as the system is concerned, whether the temperature difference causing the 
heat transfer is differential (making the process reversible) or finite. The entropy change of a 
system caused by the transfer of heat can always be calculated by d Q/ T, whether the heat 
transfer is accomplished reversibly or irreversibly. However, when a process is irreversible on 
account of finite differences in other driving forces, such as pressure, the entropy change is not 
caused solely by the heat transfer, and for its calculation one must devise a reversible means 
of accomplishing the same change of state. 
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This introduction to entropy through a consideration of heat engines is the classical 
approach, closely following its actual historical development. A complementary approach, 
based on molecular concepts and statistical mechanics, is considered briefly in Sec. 5.1 1. 

5.5 ENTROPY CHANGES OF AN IDEAL GAS 

For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed 
system, the first law, Eq. (2.8), becomes: 

Differentiation of the defining equation for enthalpy, H = U + P V ,  yields: 

Eliminating dU gives: 

or dQre, = dH - V d P  

For an ideal gas, d H  = C $ ~ T  and V = RT/  P .  With these substitutions and then division 
by T ,  

d Qrev - 
dT d P  

- - C i g - - R -  
T T P 

As a result of Eq. (5.1 I), this becomes: 

where S is the molar entropy of an ideal gas. Integration from an initial state at conditions To 
and Po to a final state at conditions T and P gives: 

Although derived for a mechanically reversible process, this equation relates properties only, 
and is independent of the process causing the change of state. It is therefore a general equation 
for the calculation of entropy changes of an ideal gas. 
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Equation (4.4) for the temperature dependence of the molar heat capacity C? allows 
integration of the first term on the right of Eq. (5.14). The result is conveniently expressed as 

where 

Since this integral must often be evaluated, we include in App. D representative computer 
programs for its evaluation. For computational purposes the right side of Eq. (5.15) is defined 
as the function, ICPS(TO,T;A,B,C,D). Equation (5.15) then becomes: 

The computer programs also calculate a mean heat capacity defined as: 

1; C?IT/ T (c?), = 
ln(T/ To) 

Here, the subscript "S" denotes a mean value specific to entropy calculations. Division of 
Eq. (5.15) by ln(T/ To) or In z therefore yields: 
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The right side of this equation is defined as another function, MCPS(TO,T;A,B,C,D). Equation 
(5.17) then becomes: 

Solving for the integral in Eq. (5.16) gives: 

and Eq. (5.14) becomes: 

This form of the equation for entropy changes of an ideal gas may be useful when iterative 
calculations are required. 
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5.6 MATHEMATICAL STATEMENT OF THE SECOND LAW 

Consider two heat reservoirs, one at temperature TH and a second at the lower temperature Tc. 
Let a quantity of heat 1 Ql be transferred from the hotter to the cooler reservoir. The entropy 
changes of the reservoirs at TH and at Tc are: 

- l Q l  AS; = - and l Q l  As; = - 
TH TC 

These two entropy changes are added to give: 

Since TH > Tc, the total entropy change as a result of this irreversible process is positive. Also, 
ASmtal becomes smaller as the difference TH - TC gets smaller. When TH is only infinitesimally 
higher than Tc, the heat transfer is reversible, and AStora approaches zero. Thus for the process 
of irreversible heat transfer, AStoul is always positive, approaching zero as the process becomes 
reversible. 

Consider now an irreversible process in a closed system wherein no heat transfer occurs. 
Such a process is represented on the P V  diagram of Fig. 5.6, which shows an irreversible, 
adiabatic expansion of 1 mol of fluid from an initial equilibrium state at point A to a final 
equilibrium state at point B. Now suppose the fluid is restored to its initial state by a reversible 
process consisting of two steps: first, the reversible, adiabatic (constant-entropy) compression 
of the fluid to the initial pressure, and second, a reversible, constant-pressure step that restores 
the initial volume. If the initial process results in an entropy change of the fluid, then there 
must be heat transfer during the reversible, constant-P second step such that: 

Figure 5.6 Cycle containing an irreversible adiabatic process A to B 
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The original irreversible process and the reversible restoration process constitute a cycle for 
which AU = 0 and for which the work is therefore: 

A 

-w = Q E V  = dQ,v 

However, according to statement l a  of the second law, Q,,, cannot be directed into the system, 
for the cycle would then be a process for the complete conversion into workof the heat absorbed. 
Thus, d Q,, is negative, and it follows that S i  - SL is also negative; whence S i  > S i .  Since 
the original irreversible process is adiabatic (AS,,, = O), the total entropy change of the system 
and surroundings as a result of the process is AStota1 = S i  - Sa > 0. 

In arriving at this result, our presumption is that the original irreversible process results in 
an entropy change of the fluid. If the original process is in fact isentropic, then the system can be 
restored to its initial state by a simple reversible adiabatic process. This cycle is accomplished 
with no heat transfer and therefore with no net work. Thus the system is restored without 
leaving any change elsewhere, and this implies that the original process is reversible rather 
than irreversible. 

Thus the same result is found for adiabatic processes as for direct heat transfer: AStom1 is 
always positive, approaching zero as a limit when the process becomes reversible. This same 
conclusion can be demonstrated for any process whatever, leading to the general equation: 

This mathematical statement of the second law affirms that every 
process proceeds in such a direction that the total entropy change 
associated with it is positive, the limiting value of zero being attained 
only by a reversible process. No process is possible for which the 
total entropy decreases. 
We return now to a cyclic heat engine that takes in heat I Q H  I from a heat reservoir at T H ,  

and discards heat 1 Qc 1 to another heat reservoir at Tc. Since the engine operates in cycles, it 
undergoes no net changes in its properties. The total entropy change of the process is therefore 
the sum of the entropy changes of the heat reservoirs: 

The work produced by the engine is 

Elimination of 1 Qc 1 between these two equations and solution for I W I gives: 

This is the general equation for work of a heat engine for temperature levels Tc and TH. The 
minimum work output is zero, resulting when the engine is completely inefficient and the 
process degenerates into simple irreversible heat transfer between the two heat reservoirs. In 
this case solution for AStotal yields the equation obtained at the beginning of this section. The 
maximum work is obtained when the engine is reversible, in which case AStota1 = 0, and the 
equation reduces to the second term on the right, the work of a Carnot engine. 
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5.7 ENTROPY BALANCE FOR OPEN SYSTEMS 

Just as an energy balance can be written for processes in which fluid enters, exits, or flows 
through a control volume (Sec. 2.12), so too can an entropy balance be written. There is, 
however, an important difference: Entropy is not conserved. The second law states that the 
total entropy change associated with any process must be positive, with a limiting value of 
zero for a reversible process. This requirement is taken into account by writing the entropy 
balance for both the system and its surroundings, considered together, and by including an 
entropy-generation term to account for the irreversibilities of the process. This term is the 
sum of three others: one for entropy changes in the streams flowing in and out of the control 
volume, one for entropy changes within the control volume, and one for entropy changes in 
the surroundings. If the process is reversible, these three terms sum to zero so that AStotd = 0. 
If the process is irreversible, they sum to a positive quantity, the entropy-generation term. 
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The statement of balance, expressed as rates, is therefore: 

Time rate of 
Net rate of Time rate of 

change of Total rate [ entropy change in of 1 + 1 i;i5 1 + [ entropy in 1 = 1 of entropy 1 
generation 

flowing streams surroundings 

The equivalent equation of entropy balance is 

where sG is the rate of entropy generation. This equation is the general rate form of the entropy 
balance, applicable at any instant. Each term can vary with time. The first term is simply the 
net rate of gain in entropy of the flowing streams, i.e., the difference between the total entropy 
transported out by exit streams and the total entropy transported in by entrance streams. The 
second term is the time rate of change of the total entropy of the fluid contained within the 
control volume. The third term accounts for entropy changes in the surroundings, the result of 
heat transfer between system and surroundings. 

Let rate of heat transfer Q, with respect to a particular part of the control surface be 
associated with T,,j where subscript a, j denotes a temperature in the surroundings. The 
rate of entropy change in the surroundings as a result of this transfer is then - Q j / ~ u ,  j. The 
minus sign converts Q j, defined with respect to the system, to a heat rate with respect to the 
surroundings. The third term in Eq. (5.20) is therefore the sum of all such quantities: 

Equation (5.20) is now written: 

The final term, representing the rate of entropy generation sG, reflects the second-law require- 
ment that it be positive for irreversible processes. There are two sources of irreversibility: (a)  
those within the control volume, i.e., internal irreversibilities, and (b)  those resulting from heat 
transfer across finite temperature differences between system and surroundings, i.e., external 
thermal irreversibilities. In the limiting case where sG = 0 ,  the process must be completely 
reversible, implying: 

The process is internally reversible within the control volume. 

Heat transfer between the control volume and its surroundings is reversible. 

The second item means either that heat reservoirs are included in the surroundings with 
temperatures equal to those of the control surface or that Carnot engines are inter- 
posed in the surroundings between the control-surface temperatures and the heat-reservoir 
temperatures. 
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For a steady-state flow process the mass and entropy of the fluid in the control volume 
are constant, and d(mS),,/dt is zero. Equation (5.21) then becomes: 

If in addition there is but one entrance and one exit, with m the same for both streams, dividing 
through by m yields: 

Each term in Eq. (5.23) is based on a unit amount of fluid flowing through the control volume. 
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5.8 CALCULATION OF IDEAL WORK 

In any steady-state flow process requiring work, there is an absolute minimum amount which 
must be expended to accomplish the desired change of state of the fluid flowing through the 
control volume. In a process producing work, there is an absolute maximum amount which may 
be accomplished as the result of a given change of state of the fluid flowing through the control 
volume. In either case, the limiting value obtains when the change of state associated with the 
process is accomplished completely reversibly. For such a process, the entropy generation is 
zero, and Eq. (5.22), written for the uniform surroundings temperature T,, becomes: 

or Q = Tg A(sm)fs 

Substitute this expression for Q in the energy balance, Eq. (2.30): 

A [ ( H  + $ u2 + zg) m]f, = T, A(Sm)f, i- wS (rev) 

The shaft work,  rev), is here the work of a completely reversible process. If given the name 
ideal work, wideal, the preceding equation may be rewritten: 
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In most applications to chemical processes, the kinetic- and potential-energy terms are negli- 
gible compared with the others; in this event Eq. (5.24) reduces to: 

1 Wideal = ~ ( ~ m b  - T, ~ ( ~ m ) f s  1 (5.25) 

For the special case of a single stream flowing through the control volume, Eq. (5.25) becomes: 

Wideal =m(AH - T, AS) (5.26) 

Division by m puts this equation on a unit-mass basis: 

Widea = AH - To A s  

A completely reversible process is hypothetical, devised solely for determination of the ideal 
work associated with a given change of state. 

The only connection between the hypothetical reversible process and 
an actual process is that it brings about the same change of state as 
the actual process. 

Our objective is to compare the actual work of a process with the work of the hypothetical 
reversible process. No description is ever required of hypothetical processes devised for the 
calculation of ideal work. One need only realize that such processes may always be imagined. 
Nevertheless, an illustration of a hypothetical reversible process is given in Ex. 5.7. 

Equations (5.24) through (5.27) give the work of a completely reversible process asso- 
ciated with given property changes in the flowing streams. When the same property changes 
occur in an actual process, the actual work W, (or W,) as given by an energy balance, can 
be compared with the ideal work. When Wideal (or Wideal) is positive, it is the minimum work 
required to bring about a given change in the properties of the flowing streams, and is smaller 
than wS. In this case a thermodynamic efficiency q, is defined as the ratio of the ideal work to 
the actual work: 

Wideal 
qt (work required) = - 

w s  

When wideal (or Wideal) is negative, ( wideal 1 is the maximum work obtainable from a given change 
in the properties of the flowing streams, and is larger than I W, 1 .  In this case, the thermodynamic 
efficiency is defined as the ratio of the actual work to the ideal work: 

Ws 
qt(work produced) = - 

Wideal 
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5.9 LOST WORK 

Work that is wasted as the result of irreversibilities in a process is called lost work, WIOst, and 
is defined as the difference between the actual work of a process and the ideal work for the 
process. Thus by definition, 

Wlost -- Ws - Wideal (5.30) 

In terms of rates, 

wlost -- w~ - w i d e a ~  (5.31) 

The actual work rate comes from Eq. (2.30): 

wS = A[(H + ;u* + z g )  vizIfs - Q 

The ideal work rate is given by Eq. (5.24): 

 ideal = A [(H + +u2 + zg )  m]fs - T, A(S1n)fs 

Substituting these expressions for wS and wide,, in Eq. (5.31) yields: 

For the case of a single surroundings temperature T,, Eq. (5.22) becomes: 

Multiplication by T, gives: 

T,SG = T, A(Sm)fs - Q 

The right sides of this equation and Eq. (5.32) are identical; therefore, 

Since the second law of thermodynamics requires that sG > 0, it follows that Wlost 2 0. 
When a process is completely reversible, the equality holds, and the lost work is zero. For 
irreversible processes the inequality holds, and the lost work, i.e., the energy that becomes 
unavailable for work, is positive. 
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The engineering significance of this result is clear: The greater the 
irreversibility of a process, the greater the rate of entropy production 
and the greater the amount of energy that becomes unavailable for 
work. Thus every irreversibility carries with it a price. 

For the special case of a single stream flowing through the control volume, 

wjOst = mT, AS - Q (5.35) 

Division by m makes the basis a unit amount of fluid flowing through the control volume: 

West = Tm AS - Q (5.36) 

Similarly, for a single stream, Eq. (5.33) becomes: 

Division by m changes the basis to a unit amount of fluid flowing through the control volume: 

Equations (5.36) and (5.38) combine for a unit amount of fluid to give: 

Wiost = To SG 

Again, since SG L 0, it follows that WIost , 0. 
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5.10 THE THIRD LAW OF THERMODYNAMICS 

Measurements of heat capacities at very low temperatures provide data for the calculation from 
Eq. (5.13) of entropy changes down to 0 K. When these calculations are made for different 
crystalline forms of the same chemical species, the entropy at 0 K appears to be the same for all 
forms. When the form is noncrystalline, e.g., amorphous or glassy, calculations show that the 
entropy of the more random form is greater than that of the crystalline form. Such calculations, 
which are summarized el~ewhere,~ lead to the postulate that the absolute entropy is zero for 
all perfect crystalline substances at absolute zero temperature. While the essential ideas were 
advanced by Nernst and Planck at the beginning of the twentieth century, more recent studies 
at very low temperatures have increased confidence in this postulate, which is now accepted 
as the third law. 

If the entropy is zero at T = 0 K, then Eq. (5.13) lends itself to the calculation of 
absolute entropies. With T = 0 as the lower limit of integration, the absolute entropy of a gas 
at temperature T based on calorimetric data is: 

This equation3 is based on the supposition that no solid-state transitions take place and thus no 
heats of transition need appear. The only constant-temperature heat effects are those of fusion 
at Tf and vaporization at Tu. When a solid-phase transition occurs, a term A Ht/ T, is added. 

2 ~ .  S. Pitzer, Thermodynamics, 3d ed., chap. 6, McGraw-Hill, New York, 1995. 
3~valuation of the first term on the right is not a problem for crystalline substances, because C p / T  remains finite 

as T + 0. 
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5.1 1 ENTROPY FROM THE MICROSCOPIC VIEWPOINT 

Because the molecules of an ideal gas do not interact, its internal energy resides with individual 
molecules. This is not true of the entropy. The microscopic interpretation of entropy is based 
on an entirely different concept, as suggested by the following example. 

Suppose an insulated container, partitioned into two equal volumes, contains Avogadro's 
number N A  of ideal-gas molecules in one section and no molecules in the other. When the 
partition is withdrawn, the molecules quickly distribute themselves uniformly throughout the 
total volume. The process is an adiabatic expansion that accomplishes no work. Therefore, 

and the temperature does not change. However, the pressure of the gas decreases by half, and 
the entropy change as given by Eq. (5.14) is: 

Since this is the total entropy change, the process is clearly irreversible. 
At the instant when the partition is removed the molecules occupy only half the space 

available to them. In this momentary initial state the molecules are not randomly distributed 
over the total volume to which they have access, but are crowded into just half the total volume. 
In this sense they are more ordered than they are in the final state of uniform distribution 
throughout the entire volume. Thus, the final state can be regarded as a more random, or 
more disordered, state than the initial state. Generalizing from this example, one is led to the 
notion that increasing disorder (or decreasing structure) on the molecular level corresponds to 
increasing entropy. 

The means for expressing disorder in a quantitative way was developed by L. Boltzmann 
and J. W. Gibbs through a quantity Q, defined as the number of different ways that microscopic 
particles can be distributed among the "states" accessible to them. It is given by the general 
formula: 

where n is the total number of particles, and n l ,  nz, n3, etc., represent the numbers of particles 
in "states" 1,2,3, etc. The term "state" denotes the condition of the microscopic particles, and 
the quotation marks distinguish this idea of state from the usual thermodynamic meaning as 
applied to a macroscopic system. 

With respect to our example there are but two "states," representing location in one half 
or the other of the container. The total number of particles is NA molecules, and initially they 
are all in a single "state." Thus 

This result confirms that initially the molecules can be distributed between the two accessible 
"states" in just one way. They are all in a given "state," all in just one half of the container. For 
an assumed final condition of uniform distribution of the molecules between the two halves of 
the container, nl = n2 = NA/2 ,  and 
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This expression gives a very large number for Q2, indicating that the molecules can be 
distributed uniformly between the two "states" in many different ways. Many other values of 
Q2 are possible, each one of which is associated with a particular nonuniform distribution of 
the molecules between the two halves of the container. The ratio of a particular Q2 to the sum 
of all possible values is the probability of that particular distribution. 

The connection established by Boltzmann between entropy S and Q is given by the 
equation: 

S = klnQ (5.42) 

where k is Boltzmann's constant, equal to R / N A .  Integration between states 1 and 2 yields: 

Substituting values for Q1 and Q2 from our example into this expression gives: 

Since NA is very large, we take advantage of Stirling's formula for the logarithms of factorials 
of large numbers: 

lnX! = XlnX - X 

and as a result, 

This value for the entropy change of the expansion process is the same as that given by Eq. (5.14), 
the classical thermodynamic formula for ideal gases. 

Equations (5.41) and (5.42) are the basis for relating thermodynamic properties to sta- 
tistical mechanics (Sec. 16.4). 

PROBLEMS 

5.1. Prove that it is impossible for two lines representing reversible, adiabatic processes on 
a P V diagram to intersect. (Hint: Assume that they do intersect, and complete the cycle 
with a line representing a reversible, isothermal process. Show that performance of this 
cycle violates the second law.) 

5.2. A Carnot engine receives 250 kW of heat from a heat-source reservoir at 798.15 K 
(525°C) and rejects heat to a heat-sink reservoir at 323.15 K (50°C). What are the power 
developed and the heat rejected? 

5.3. The following heat engines produce power of 95 000 kW. Determine in each case the 
rates at which heat is absorbed from the hot reservoir and discarded to the cold reservoir. 

(a) A Carnot engine operates between heat reservoirs at 750 K and 300 K. 
(b) A practical engine operates between the same heat reservoirs but with a thermal 

efficiency r/ = 0.35. 
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5.4. A particular power plant operates with a heat-source reservoir at 623.15 K (350°C) and 
a heat-sink reservoir at 303.15 K (30°C). It has a thermal efficiency equal to 55% of the 
Carnot-engine thermal efficiency for the same temperatures. 

(a )  What is the thermal efficiency of the plant? 
(b )  To what temperature must the heat-source reservoir be raised to increase the thermal 

efficiency of the plant to 35%? Again 7 is 55% of the Carnot-engine value. 

5.5. An egg, initially at rest, is dropped onto a concrete surface; it breaks. Prove that the 
process is irreversible. In modeling this process treat the egg as the system, and assume 
the passage of sufficient time for the egg to return to its initial temperature. 

5.6. Which is the more effective way to increase the thermal efficiency of a Carnot engine: 
to increase TH with Tc constant, or to decrease Tc with TH constant? For a real engine, 
which would be the more practical way? 

5.7. Large quantities of liquefied natural gas (LNG) are shipped by ocean tanker. At the 
unloading port provision is made for vaporization of the LNG so that it may be delivered 
to pipelines as gas. The LNG arrives in the tanker at atmospheric pressure and 113.7 K, 
and represents a possible heat sink for use as the cold reservoir of a heat engine. For 
unloading of LNG as a vapor at the rate of 9000 m3 s-I, as measured at 298.15 K (25°C) 
and 1.0133 bar, and assuming the availability of an adequate heat source at 303.15 K 
(30°C), what is the maximum possible power obtainable and what is the rate of heat 
transfer from the heat source? Assume that LNG at 298.15 K (25°C) and 1.0133 bar 
is an ideal gas with the molar mass of 17. Also assume that the LNG vaporizes only, 
absorbing only its latent heat of 512 kJ kg-' at 113.7 K. 

5.8. With respect to 1 kg of liquid water: 

(a )  Initially at 273.15 K (O0C), it is heated to 373.15 K (100°C) by contact with a heat 
reservoir at 373.15 K (100°C). What is the entropy change of the water? Of the heat 
reservoir? What is AStota1? 

(b )  Initially at 273.15 K (O°C), it is first heated to 323.15 K (50°C) by contact with a 
heat reservoir at 323.15 K (50°C) and then to 373.15 K (100°C) by contact with a 
reservoir at 373.15 K (100°C). What is AStotal? 

( c )  Explain how the water might be heated from 273.15 K (0°C) to 373.15 K (100°C) 
SO that AStotal = 0.  

5.9. A rigid vessel of 0.06 m3 volume contains an ideal gas, Cy = (5 /2 )R ,  at 500 K and 
1 bar. 

(a )  If heat in the amount of 15 kJ is transferred to the gas, determine its entropy change. 
(b) If the vessel is fitted with a stirrer that is rotated by a shaft so that work in the amount 

of 15 kJ is done on the gas, what is the entropy change of the gas if the process is 
adiabatic? What is Astotal? What is the irreversible feature of the process? 

5.10. An ideal gas, C p  = (7 /2 )R ,  is heated in a steady-flow heat exchanger from 343.15 K 
to 463.15 K (70°C to 190°C) by another stream of the same ideal gas which enters at 
593.15 K (320°C). The flow rates of the two streams are the same, and heat losses from 
the exchanger are negligible. 
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(a) Calculate the molar entropy changes of the two gas streams for both parallel and 
countercurrent flow in the exchanger. 

(b) What is ASbtal in each case? 
(c) Repeat parts (a) and (b) for countercurrent flow if the heating stream enters at 

473.15 K (200°C). 

5.11. For an ideal gas with constant heat capacities, show that: 

(a) For a temperature change from TI to T2, AS of the gas is greater when the change 
occurs at constant pressure than when it occurs at constant volume. 

(b) For a pressure change from PI to P2, the sign of AS for an isothermal change is 
opposite that for a constant-volume change. 

5.12. For an ideal gas prove that: 

5.13. A Carnot engine operates between two finite heat reservoirs of total heat capacity C& 
and CL. 

(a) Develop an expression relating Tc to TH at any time. 
(b) Determine an expression for the work obtained as a function of CL, C i ,  TH, and 

the initial temperatures TH, and Tco. 
(c) What is the maximum work obtainable? This corresponds to infinite time, when the 

reservoirs attain the same temperature. 

In approaching this problem, use the differential form of Carnot's equation, 

and a differential energy balance for the engine, 

d W - d Q c - d Q ~ = 0  

Here, Qc and QH refer to the reservoirs. 

5.14. A Carnot engine operates between an infinite hot reservoir and ajnite cold reservoir of 
total heat capacity Ch. 

(a) Determine an expression for the work obtained as a function of C i ,  TH (= constant), 
Tc, and the initial cold-reservoir temperature Tco . 

(b) What is the maximum work obtainable? This corresponds to infinite time, when Tc 
becomes equal to TH. 

The approach to this problem is the same as for Pb. 5.13. 

5.15. A heat engine operating in outer space may be assumed equivalent to a Carnot engine 
operating between reservoirs at temperatures TH and Tc. The only way heat can be 
discarded from the engine is by radiation, the rate of which is given (approximately) by: 

4 
IQcl = kATc 

where k is a constant and A is the area of the radiator. Prove that, for fixed power 
output I W I  and for fixed temperature TH, the radiator area A is a minimum when the 
temperature ratio TcITH is 0.75. 
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5.16. Imagine that a stream of fluid in steady-state flow serves as a heat source for an infinite 
set of Carnot engines, each of which absorbs a differential amount of heat from the fluid, 
causing its temperature to decrease by a differential amount, and each of which rejects 
a differential amount of heat to a heat reservoir at temperature T,. As a result of the 
operation of the Carnot engines, the temperature of the fluid decreases from TI to T2. 
Equation (5.8) applies here in differential form, wherein r is defined as: 

where Q is heat transfer with respect to the flowing fluid. Show that the total work of 
the Carnot engines is given by: 

where AS and Q both refer to the fluid. In a particular case the fluid is an ideal gas, 
C p  = (7/2)R,  for which TI = 600 K and T2 = 400 K. If T, = 300 K ,  what is the value 
of W in J mol-'? How much heat is discarded to the heat reservoir at T,? What is the 
entropy change of the heat reservoir? What is AStota1? 

5.17. A Carnot engine operates between temperature levels of 600 K and 300 K. It drives 
a Carnot refrigerator, which provides cooling at 250 K and discards heat at 300 K. 
Determine a numerical value for the ratio of heat extracted by the refrigerator ("cooling 
load") to the heat delivered to the engine ("heating load"). 

5.18. An ideal gas with constant heat capacities undergoes a change of state from conditions 
T I ,  PI to conditions T2, P2. Determine AH ( J  mol-') and AS ( J  mol-' K-') for one of 
the following cases. 

(a )  Tl = 300 K,  PI = 1.2 bar, T2 = 450 K,  P2 = 6 bar, C p / R  = 712. 
(b)  Tl = 300 K ,  PI = 1.2 bar, T2 = 500 K ,  P2 = 6 bar, C p / R  = 712. 
(c)  Tl = 450 K ,  Pl = 10 bar, T2 = 300 K,  P2 = 2 bar, C p / R  = 512. 
( d )  TI = 400 K ,  PI = 6 bar, T2 = 300 K, P2 = 1.2 bar, C p / R  = 912. 
(e) Tl = 500 K ,  PI = 6 bar, T2 = 300 K, P2 = 1.2 bar, C p  / R  = 4. 

5.19. An ideal gas, C p  = (7/2)R and Cv = (5/2)R,  undergoes a cycle consisting of the 
following mechanically reversible steps: 

An adiabatic compression from P I,  V I ,  TI to PI, V2, T2. 

An isobaric expansion from P2, V2, T2 to P3 = P2, V3, T3. 
An adiabatic expansion from P3, V3, T3 to P4, V4, T4 
A constant-volume process from P4, V4, T4 to P I ,  VI  = V4, T I .  

Sketch this cycle on a P V diagram and determine its thermal efficiency if TI = 473.15 K 
(200°C), T2 = 773.15 K (500°C), T3 = 1973.15 K (1700°C), and T4 = 973.15 K 
(700°C). 

5.20. The infinite heat reservoir is an abstraction, often approximated in engineering applica- 
tions by large bodies of air or water. Apply the closed-system form of the energy balance 
[Eq. (2.3)] to such a reservoir, treating it as a constant-volume system. How is it that 
heat transfer to or from the reservoir can be nonzero, yet the temperature of the reservoir 
remains constant? 
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5.21. One mole of an ideal gas, Cp = (7/2)R and Cv = (5/2)R, is compressed adiabatically 
in a pistonlcylinder device from 2 bar and 298.15 K (25°C) to 7 bar. The process is 
irreversible and requires 35% more work than a reversible, adiabatic compression from 
the same initial state to the same final pressure. What is the entropy change of the gas? 

5.22. A mass m of liquid water at temperature TI is mixed adiabatically and isobarically with 
an equal mass of liquid water at temperature T2. Assuming constant Cp, show that 

and prove that this is positive. What would be the result if the masses of the water were 
dzrerent, say, m 1 and m2? 

5.23. Reversible adiabatic processes are isentropic. Are isentropic processes necessarily 
reversible and adiabatic? If so, explain why; if not, give an example illustrating the point. 

5.24. Prove that the mean heat capacities ( C P ) ~  and (CP)S are inherently positive, whether 
T > To or T < To. Explain why they are well defined for T = To. 

5.25. A reversible cycle executed by 1 mol of an ideal gas for which Cp = (5/2)R and 
Cv = (3/2)R consists of the following: 

Starting at Tl = 700 K and PI = 1.5 bar, the gas is cooled at constant pressure 
to T2 = 350 K. 
From 350 K and 1.5 bar, the gas is compressed isothermally to pressure P2. 

The gas returns to its initial state along a path for which P T  = constant. 

What is the thermal efficiency of the cycle? 

5.26. One mole of an ideal gas is compressed isothermally but irreversibly at 403.15 K 
(130°C) from 2.5 bar to 6.5 bar in a pistonlcylinder device. The work required is 30% 
greater than the work of reversible, isothermal compression. The heat transferred from 
the gas during compression flows to a heat reservoir at 298.15 K (25°C). Calculate the 
entropy changes of the gas, the heat reservoir, and AStotal. 

5.27. For a steady-flow process at approximately atmospheric pressure, what is the entropy 
change of the gas: 

(a) When 10 mol of SO2 is heated from 473.15 to 1373.15 K (200 to llOO°C)? 
(b) When 12 rnol of propane is heated from 523.15 to 1473.15 K (250 to 1200°C)? 

5.28. What is the entropy change of the gas, heated in a steady-flow process at approximately 
atmospheric pressure, 

(a)  When 800 kJ is added to 10 mol of ethylene initially at 473.15 K (200°C)? 
(b) When 2500 kJ is added to 15 mol of 1-butene initially at 533.15 K (260°C)? 
(c) When 1.055 GJ is added to 18.14 kmol of ethylene initially at 533.15 K (260°C)? 

5.29. A device with no moving parts provides a steady stream of chilled air at 
248.15 K (-25°C) and 1 bar. The feed to the device is compressed air at 298.15 K 
(25°C) and 5 bar. In addition to the stream of chilled air, a second stream of warm air 
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flows from the device at 348.15 K (75°C) and 1 bar. Assuming adiabatic operation, 
what is the ratio of chilled air to warm air that the device produces? Assume that air is 
an ideal gas for which C p  = (7/2)R. 

5.30. An inventor has devised a complicated nonflow process in which 1 mol of air is the 
working fluid. The net effects of the process are claimed to be: 

A change in state of the air from 523.15 K (250°C) and 3 bar to 353.15 K (80°C) 
and 1 bar. 

The production of 1800 J of work. 

The transfer of an undisclosed amount of heat to a heat reservoir at 303.15 K (30°C). 

Determine whether the claimed performance of the process is consistent with the 
second law. Assume that air is an ideal gas for which C p  = (7/2)R. 

5.31. Consider the heating of a house by a furnace, which serves as a heat-source reservoir at a 
high temperature TF.  The house acts as a heat-sink reservoir at temperature T ,  and heat 
I Q I must be added to the house during a particular time interval to maintain this tempera- 
ture. Heat I Q I can of course be transferred directly from the furnace to the house, as is the 
usual practice. However, a third heat reservoir is readily available, namely, the surround- 
ings at temperature T,, which can serve as another heat source, thus reducing the amount 
of heat required from the furnace. Given that TF = 810 K,  T = 295 K, T, = 265 K, and 

1 Q 1 = 1000 kJ, determine the minimum amount of heat I Q F  I which must be extracted 
from the heat-source reservoir (furnace) at TF . No other sources of energy are available. 

5.32. Consider the air conditioning of a house through use of solar energy. At a particular 
location experiment has shown that solar radiation allows a large tank of pressurized 
water to be maintained at 448.15 K (175°C). During a particular time interval, heat in 
the amount of 1500 W must be extracted from the house to maintain its temperature at 
297.15 K (24°C) when the surroundings temperature is 306.15 K (33°C). Treating the 
tank of water, the house, and the surroundings as heat reservoirs, determine the minimum 
amount of heat that must be extracted from the tank of water by any device built to 
accomplish the required cooling of the house. No other sources of energy are available. 

5.33. A refrigeration system cools a brine from 298.15 K to 258.15 K (25°C to -15°C) at 
the rate 20 kg s-'. Heat is discarded to the atmosphere at a temperature of 303.15 K 
(30°C). What is the power requirement if the thermodynamic efficiency of the system 
is 0.27? The specific heat of the brine is 3.5 kJ kgp1 K-'. 

5.34. An electric motor under steady load draws 9.7 amperes at 110 volts; it delivers 0.93 kW 
of mechanical energy. The temperature of the surroundings is 300 K. What is the total 
rate of entropy generation in W K-'? 

5.35. A 25-ohm resistor at steady state draws a current of 10 amperes. Its temperature is 
3 10 K; the temperature of the surroundings is 300 K. What is the total rate of entropy 
generation SG? What is its origin? 

5.36. Show how the general rate form of the entropy balance, Eq. (5.21), reduces to Eq. (5.19) 
for the case of a closed system. 



184 CHAPTER 5. The Second Law of Thermodynamics 

5.37. A list of common unit operations follows: 

(a) Single-pipe heat exchanger; (6) Double-pipe heat exchanger; (c) Pump; 
(d) Gas compressor: (e) Gas turbine (expander) ; ( f )  Throttle valve: (g) Nozzle. 

Develop a simplified form of the general steady-state entropy balance appropriate to 
each operation. State carefully, and justify, any assumptions you make. 

5.38. Ten kmol per hour of air is throttled from upstream conditions of 298.15 K (25°C) 
and 10 bar to a downstream pressure of 1.2 bar. Assume air to be an ideal gas with 
Cp = (7/2)R. 

(a) What is the downstream temperature? 
(b) What is the entropy change of the air in J mol-' K-l? 
(c) What is the rate of entropy generation in W K-l? 
(d) If the surroundings are at 293.15 K (20°C), what is the lost work? 

5.39. A steady-flow adiabatic turbine (expander) accepts gas at conditions TI, PI, and 
discharges at conditions T2, P2. Assuming ideal gases, determine (per mole of gas) W, 
Wideal, WlOst, and SG for one of the following cases. Take T, = 300 K. 

(a)  Tl = 500 K, P1 = 6 bar, T2 = 371 K, P2 = 1.2 bar, Cp/R = 712. 
(b) TI = 450 K, PI = 5 bar, T2 = 376 K, P2 = 2 bar, Cp/R = 4. 
(c) TI = 525 K, P1 = 10 bar, T2 = 458 K, P2 = 3 bar, Cp/ R = 1 112. 
(d) TI = 475 K, PI = 7 bar, T2 = 372 K, P2 = 1.5 bar, Cp/R = 912. 
(e) TI = 550 K, P1 = 4 bar, T2 = 403 K, P2 = 1.2 bar, Cp/R = 512. 

5.40. Consider the direct heat transfer from a heat reservoir at TI to another heat reservoir at 
temperature T2, where TI > T2 > T,. It is not obvious why the lost work of this process 
should depend on T,, the temperature of the surroundings, because the surroundings 
are not involved in the actual heat-transfer process. Through appropriate use of the 
Carnot-engine formula, show for the transfer of an amount of heat equal to 1 Q 1 that 

5.41. An ideal gas at 2500 kPa is throttled adiabatically to 150 kPa at the rate of 20 mol s-'. 
Determine SG and wlOst if T, = 300 K. 

5.42. An inventor claims to have devised a cyclic engine which exchanges heat with reservoirs 
at 298.15 K to 523.15 K (25°C and 250°C), and which produces 0.45 kJ of work for 
each kJ of heat extracted from the hot reservoir. Is the claim believable? 

5.43. Heat in the amount of 150 kJ is transferred directly from a hot reservoir at TH= 550 K 
to two cooler reservoirs at TI = 350 K and T2 = 250 K. The surroundings temperatrue 
is T, = 300 K .  If the heat transferred to the reservoir at Tl is half that transferred to the 
reservior at T2, calculate: 

(a) The entropy generation in kJ K-' . 
(b) The lost work. 

How could the process be made reversible? 

5.44. A nuclear power plant generates 750 MW; the reactor temperature is 588.15 K (315°C) 
and a river with water temperature of 293.15 K (20°C) is available. 
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(a )  What is the maximum possible thermal efficiency of the plant, and what is the 
minimum rate at which heat must be discarded to the river? 

(b) If the actual thermal efficiency of the plant is 60% of the maximum, at what rate 
must heat be discarded to the river, and what is the temperature rise of the river if 
it has a flowrate of 165 m3 s-'? 

5.45. A single gas stream enters a process at conditions T I ,  P I ,  and leaves at pressure P2. The 
process is adiabatic. Prove that the outlet temperature T2 for the actual (irreversible) 
adiabatic process is greater than that for a reversible adiabatic process. Assume the gas 
is ideal with constant heat capacities. 


