Chapter 5

The Second Law of
Thermodynamics

Thermodynamicsisconcernedwith transformationsof energy, and thelawsof thermodynamics
describe the bounds within which these transformationsare observed to occur. The first law
reflects the observation that energy is conserved, but it imposes no restriction on the process
direction. Y, al experienceindicatesthe existenceof such arestriction, the concisestatement
of which constitutesthe second law.

The differences between the two forms of energy, heat and work, provide some insight
into the second law. In an energy balance, both work and heat are included as simple additive
terms, implyingthat one unit of heat, ajoule, is equivaent to the same unit of work. Although
thisis true with respect to an energy balance, experienceteachesthat thereis a difference of
kind between heat and work. This experienceis summarized by the followingfacts.

Workisreadily transformedinto other formsaf energy: for example,into potential energy
by elevation of aweight, into kineticenergy by accelerationof amass, into electrical energy by
operation of a generator. These processescan be made to approach a conversion efficiency of
100% by elimination of friction, a dissipativeprocessthat transformswork into heat. Indeed,
work is readily transformed compl etely into heat, as demonstrated by Joule's experiments.

On the other hand, all effortsto devise a processfor the continuous conversion of heat
completelyintowork or into mechanical or €l ectrical energy havefailed. Regardl essof improve-
ments to the devices employed, conversion efficiencies do not exceed about 40%. Evidently,
heat isaform of energy intrinsically less useful and henceless valuablethan an equal quantity
of work or mechanical or electrical energy.

Drawing further on our experience, we know that the flow of heat between two bodies
aways takes place from the hotter to the cooler body, and never in the reversedirection. This
factisof such significancethat its restatement serves as an acceptabl eexpressionof the second
law.

5.1 STATEMENTS OF THE SECOND LAW

Theobservationsjust described suggest ageneral restrictionon processesbeyond that imposed
by thefirst law. The second law is equally well expressedin two statementsthat describe this
restriction:
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e Statement 1: No apparatus can operate in such away that its only effect (in system and
surroundings) is to convert heat absorbed by a system completelyinto work done by the
system.

e Statement 2: No processis possible which consists solely in the transfer of heat from
one temperaturelevel to a higher one.

Statement 1 does not say that heat cannot be converted into work; only that the process
cannot leave both the system and its surroundings unchanged. Consider a system consisting
of an ideal gas in a piston/cylinder assembly expanding reversibly at constant temperature.
Accordingto Eq. (2.3), AU = Q+ W. For anideal gas, AU’ = 0, and therefore, Q = —W.
The heat absorbed by the gas from the surroundings is egqual to the work transferred to the
surroundings by the reversible expansion of the gas. At first this might seem a contradiction of
statement 1, sincein the surroundings the result is the complete conversion of heat into work.
However, this statement requiresin addition that no change occur in the system, arequirement
that is not met.

This process islimited in another way, because the pressure of the gas soon reaches that
of the surroundings, and expansion ceases. Therefore, the continuous production of work from
heat by this method is impossible. If the original state of the system is restored in order to
comply with the requirements of statement 1, energy from the surroundings in the form of
work is needed to compress the gas back to its original pressure. At the same time energy as
heat is transferred to the surroundings to maintain constant temperature. This reverse process
requiresat | east theamount of work gained from the expansion; hence no net work is produced.
Evidently, statement 1 may be expressed in an alternative way, viz.:

e Statement la: It is impossible by a cyclic process to convert the heat absorbed by a
system completely into work done by the system.

Theword cyclicrequiresthat the system berestored periodically toitsoriginal state. Inthecase
of agasin a pistodcylinder assembly, itsinitial expansion and recompression to the original
state constitute a complete cycle. If the process is repeated, it becomes a cyclic process. The
restriction to acyclic processin statement | aamountsto the samelimitation asthat introduced
by the words only effect in statement 1.

The second law does not prohibit the production of work from heat, but it does place a
limit on how much of the heat directed into acyclic process can be converted into work done
by the process. With the exception of water and wind power, the partial conversion of heat
into work is the basis for nearly all commercial production of power. The development of a
quantitative expression for the efficiency of this conversion is the next step in the treatment of
the second law.

5.2 HEAT ENGINES

The classical approach to the second law is based on a macroscopic viewpoint of properties,
independent of any knowledge of the structure of matter or behavior of molecules. It arose
from the study of heat engines, devices or machines that produce work from heat in a cyclic
process. An example is a steam power plant in which the working fluid (steam) periodically
returns to its original state. In such a power plant the cycle (in its simplest form) consists of
thefollowing steps:



150 CHAPTERS. The Second Law of Thermodynamics

e Liquid water at ambient temperatureis pumped into a boiler at high pressure.

o Heat from afuel (heat of combustionof afossil fuel or heat from a nuclear reaction) is
transferredin theboiler to the water, converting it to high-temperaturesteam at the boiler
pressure.

e Energy istransferred as shaft work from the steam to the surroundingsby adevicesuch
as aturbine, in which the steam expandsto reduced pressure and temperature.

e Exhaust steam from the turbine is condensed by transfer of heat to the surroundings,
producing liquid water for return to the boiler, thus completing the cycle.

Essential to all heat-enginecycles are absorption of heat into the system at a high tem-
perature, rejection of heat to the surroundingsat alower temperature, and production of work.
In thetheoretical treatment of heat engines, the two temperaturel evel swhich characterizetheir
operationare maintainedby heat reservoirs,bodiesimagined capabledof absorbingor rejecting
aninfinitequantity of heat without temperaturechange. In operation, theworking fluid of aheat
engine absorbsheat | Q | from a hot reservoir, producesa net amount of work |W|, discards
heat | Q| to acold reservair, and returnstoitsinitial state. Thefirst law thereforereducesto:

W] =1Qul|—1Qcl (5.1
The thermal efficiency o theengineis defined as:

net work output
7= "heat absorbed
With Eg. (5.1) this becomes:
n= W] _ [Qnl —10cl
|Qnl | Qx|

Absolute-valuesigns are used to make the equationsindependent of the sign conventions for
Q and W. For # to be unity (100% thermal efficiency), | Q| must be zero. No engine has ever
been built for which thisistrue; some heat is always rejected to the cold reservoir. Thisresult
of engineering experienceis the basisfor statements1 and | a of the second law.

If atherma efficiency of 100% is not possiblefor heat engines, what then determines
the upper limit? One would certainly expect the thermal efficiency of a heat engineto depend
on thedegree of reversibility of its operation. Indeed, a heat engine operatingin a completely
reversiblemanner isvery special, and is called a Carnot engine. The characteristicsof such an
ideal engine werefirst described by N. L. S. Carnot! in 1824. The four steps that make up a
Carnot cycle are performed in thefollowing order:

e Step 1: A systemat thetemperatureof acold reservoir T¢ undergoesareversibleadiabatic
processthat causesits temperatureto rise to that of a hot reservoir at T4 .

e Step 2: The system maintains contact with the hot reservoir at 7y, and undergoes a
reversibleisothermal processduring which heat | Q ;| is absorbedfrom the hot reservair.

Nicolas Leonard Sadi Carnot (1796-1832), a French engineer.


YANIQUE
Highlight


5.3. Thermodynamic Temperature Scales 151

e Step 3: The system undergoesa reversible adiabatic processin the opposite direction of
step 1 that bringsits temperature back to that of the cold reservoir a Tc.

e Step 4: The system maintainscontact with thereservoirat 7¢, and undergoesareversible
isothermal processin the oppositedirection of step 2 that returnsit to itsinitial state with
rejection of heat | Q¢| to the cold reservair.

A Carnot engineoperatesbetweentwo heat reservoirsin such away that al heat absorbed
is absorbed at the constant temperature of the hot reservoir and al heat rejected is rejected at
the constant temperature of the cold reservoir. Any reversible engine operating between two
heat reservoirsis a Carnot engine; an engine operating on a different cycle must necessarily
transfer heat acrossfinite temperaturedifferencesand therefore cannot be reversible.

Carnot’s Theorem

Statement 2 of the second law isthe basisfor Carnot’s theorem:

For two given heat reservoirs no engine can have a thermal efficiency
higher than that of a Carnot engine.

To prove Camot's theorem assumetheexistenceof anengine E with athermal efficiency
greater than that of aCarnot engine which absorbsheat | Q ;7| from the hot reservoir, produces
work |W{, and discards heat |Q | — |W| to the cold reservoir. Engine E absorbs heat | 0|
from the same hot reservoir, producesthe samework |W/{, and discardsheat | Q7,1 — | W] tothe
same cold reservair. If engine E has the greater efficiency,

W W and 1Qul > 10|

Q% 1Qul
Since a Carnot engine is reversible, it may be operated in reverse; the Carnot cycle is then
traversed in the opposite direction, and it becomes a reversiblerefrigeration cycle for which
the quantities | Q1. |Qc¢|, and |W| are the same as for the engine cycle but are reversed in
direction. Let engine E drive the Carnot engine backward as a Carnot refrigerator, as shown
schematicallyin Fig. 5.1. For the engine/refrigerator combination, the net heat extracted from
the cold reservoiris:

|Qul — W] - (1Q%| - IWD) =1Qx] — 10l

The net heat delivered to the hot reservoir is dso |Qxu| — |Q]. Thus, the sole result of
the engine/refrigerator combinationis the transfer of heat from temperature 7 to the higher
temperature Ty . Sincethisisin violationof statement 2 of the second law, the original premise
that engine E has a greater thermal efficiency than the Carnot engine is false, and Carnot’s
theoremis proved. In similar fashion, one can provethat all Carnot enginesoperating between
heat reservoirsat the sametwo temperatureshavethe samethermal efficiency. Thusacorollary
to Carnot’s theoremstates:

The thermal efficiency of a Carnot engine depends only on the
temperaturelevels and not upon the working substance of the engine.

5.3 THERMODYNAMIC TEMPERATURE SCALES

Intheprecedingdiscussionweidentified temperaturel evel sby thekelvin scal e, established with
ideal-gas thermometry. This does not preclude taking advantage of the opportunity provided
by the Carnot engineto establish athermodynamictemperaturescale that is truly independent
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Figure 5.1 Engine E operating a Carnot refrigerator C

of any material properties. Let § represent temperature on some empirical scale that unequiv-
ocally identifies temperature levels. Consider two Carnot engines, one operating between a
hot reservoir at temperaturedy and acold reservoir at temperatureé, and asecond operating
between the reservoir a 6. and a till colder reservoir at 67, as shown in Fig. 5.2. The heat
rejected by thefirst engine| Q| isabsorbed by the second; thereforethe two engines working
together congtitute a third Carnot engine absorbing heat |Q z| from the reservoir a 8y and
rejecting heat | O r| to the reservoir at 6. The corollary to Carnot’s theoremindicatesthat the
thermal efficiency of thefirst engineis afunction of 85 and 6¢:

|Qc]
=il = ¢(B, O¢
0, el
[2n]
|Qc] :
Oc > [ W]
| ¢

Figure 5.2 Carnot engines 1 and 2 constitute a third Carnot engine
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Rearrangement gives:

|Qnl 1
[Qcl 1 —@(On. 6c)
where f isan unknown function.
For the second and third engines, equations of the same functional form apply:

[Qcl [Qnl
= = (B¢, @
071 = /O oF) and 07|

Division of the second of these equationsby thefirst gives:
|Qul _ fOn, 6F)
[Qct  f(bc, OF)

Comparisonaf thisequationwith Eg. (5.3) showsthat thearbitrary temperaturefy must cancel
from theratio on theright:

= f(Bu, ¢c) (5.3)

= f(0u, 6r)

Qul _ ¥on)
0cl ~ ¥6c)

where v is another unknown function.

Therightsideof Eq. (5.4) istheratioof s evaluatedat two thermodynamictemperatures,
the s are to each other as the absolute values of the heats absorbed and rejected by a Carnot
engine operating between reservoirsat these temperatures, quite independent of the properties
of any substance. Moreover, Eq. (5.4) dlows arbitrary choice of the empirical temperature
represented by O; once this choice is made, the function ¥ must be determined. If O is chosen
as the kelvin temperature T, then Eq. (5.4) becomes:

101l _ ¥(Tn)
[Qcl ¥ (Tc)

(5.4)

(3-5)

Ideal-Gas Temperature Scale; Carnot’s Equations

The cycle traversed by an ideal gas serving as the working fluid in a Carnot engineis shown
by a PV diagramin Fig. 5.3. It consists of four reversible steps:

e a — b Adiabatic compression until the temperaturerisesfrom 7 to Ty.

e b — c Isothermal expansionto arbitrary point ¢ with absorption of heat |Q g |.
e ¢ — d Adiabaticexpansion until the temperaturedecreasesto T¢.

e d — a Isothermal compressionto theinitial state with rejectionof heat [Q¢|.

For theisothermal stepsb — cand d — a, Eq. (3.26) yields:
_ Ve V.
|Qul = RTyIn © and |Qcl = RTcIn -2
Vi Va,

Therefore,

[Qnl _ Tj In(V./Vp)
[Qc] Tc In(Vy/ V)

(5.6)
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v

Figure 53 PV diagram showing Carnot cycle for an ideal gas

For an adiabatic process Eq. (3.21)is written,

Cydl dV
RT V
For stepa — band c — d, integration gives:
Tw Cy dT v, Ta Cy dT Vv,
—=h— and —— =1In—
a: R T A . R T V.
Since the left sides of these two equations are the same,
Va Vi Ve Vi
In— =In— or In —=In—
Vi V. Vi Va
Equation (5.6) now becomes:
i1Qcl  Tc

Comparison of thisresult with Eq. (5.5)yields the simplest possible functional relation for v,
namely, ¥(T') = T. We conclude that the kelvin temperature scale, based on the properties of
ideal gases, i sinfact athermodynamic scale, independent of thecharacteristics of any particul ar
substance. Substitution of Eq. (5.7)into Eq. (5.2)gives:

pm kg . 2 (5.8)
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Equations (5.7) and (5.8) are known as Carnot’s equations. In Eq. (5.7) the smallest possible
valued |Q¢| iszero; the corresponding value of T¢ isthe absolutezero of temperatureon the
kelvinscale. Asmentionedin Sec. 1.5, thisoccursat (—273.15°C). Equation(5.8) showsthat the
thermal efficiency of a Carnot engine can approach unity only when Ty approachesinfinity or
T approacheszero. Neither of theseconditionsis attainable; all heat enginesthereforeoperate
with thermal efficiencies less than unity. The cold reservoirs naturally availableon earth are
the atmosphere, lakes and rivers, and the oceans, for which T ~ 300 K. Hot reservoirsare
objectssuch asfurnaces where the temperatureis maintai ned by combustionof fossil fuelsand
nuclear reactors where the temperatureis maintained by fission of radioactive elements. For
these practical heat sources, Ty = 600 K. With these values,
300
n=1 500 = 0.5

Thisisarough practical limit for thethermal efficiency of aCarmot engine; actual heat engines
areirreversible, and their thermal efficienciesrarely exceed 0.35.

94 ENTROPY

Equation (5.7) for a Carnot engine may be written:
10l _ 1Qc|

T Ta
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If the heat quantities refer to the engine (rather than to the heat reservoirs), the numerical
value of Qy is positive and that of Q¢ is negative. The equivalent equation written without
absolute-valuesignsis therefore

Qu _ ZQc
Ty Te
On  Oc
or = 4+ —=—==0 5.9
TH * Tc B

Thus for a complete cycle of a Carnot engine, the two quantities Q/ 7 associated with the
absorption and rejection of heat by the working fluid of the engine sum to zero. The working
fluidof acyclicengineperiodicallyreturnstoitsinitial state, anditsproperties,e.g., temperature,
pressure, and internal energy, returnto their initial values. Indeed, aprimary characteristicof a
property is that the sum of its changesis zero for any complete cycle. Thusfor a Carnot cycle
Eqg. (5.9) suggeststhe existenceof a property whose changes are given by the quantitiesQ/T.

Our purposenow isto show that Eq. (5.9), applicableto thereversibleCarnot cycle, also
appliesto other reversiblecycles. The closed curveon the PV diagram of Fig. 5.4 represents
an arbitrary reversiblecycletraversed by an arbitrary fluid. Dividetheenclosed areaby aseries
of reversibleadiabatic curves; since such curvescannot intersect (Pb. 5.1), they may be drawn
arbitrarily close to one another. Several such curves are shown on the figure as long dashed
lines. Connect adjacent adiabatic curvesby two short reversibleisothermswhich approximate
the curve of the arbitrary cycle as closely as possible. The approximation clearly improves as
the adiabatic curves are more closely spaced. When the separation becomesarbitrarily small,
the original cycle is faithfully represented. Each pair of adjacent adiabatic curves and their
isothermal connecting curvesrepresent a Carnot cyclefor which Eqg. (5.9) applies.

Each Carnot cyclehasitsown pair of isotherms Ty and T¢ and associated heat quantities
Qy and Q¢. These are indicated on Fig. 5.4 for a representativecycle. When the adiabatic
curves are so closely spaced that the isothermal steps are infinitesimal, the heat quantities
becomed Qy and d Q¢, and Eq. (5.9) for each Carnot cycleis written:

dQu  dQc _

=0
Ty » Tc

In thisequation Ty and T¢-, absolutetemperaturesof the working fluid of the Carnot engines,
are also the temperaturestraversed by the working fluid of the arbitrary cycle. Summation of
al quantitiesd @/ T for the Carnot enginesleadsto theintegral:

%d?f“” =0 (5.10)

where the circle in the integral sign signifies integration over the arbitrary cycle, and the
subscript"'rev" indicatesthat the cycleisreversible.

Thusthe quantitiesd Qr.,/ T sum to zero for the arbitrary cycle, exhibiting the charac-
teristicof aproperty. Wethereforeinfer the existenceof a property whose differential changes
for thearbitrary cycleare given by thesequantities. The property is called entropy (en'-tro-py),
and its differential changesare:

_dorev

ds’
T

(5.11)
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Figure 5.4 An arbitrary reversible cyclic process drawn on a PV diagram

where S' isthe total (rather than molar) entropy of the system. Alternatively,

dQwey =T dS (5.12)

Points A and B on the PV diagram of Fig. 5.5 represent two equilibrium states of a particular
fluid, and paths ACB and ADB show two arbitrary reversible processes connecting these
points. Integration of Eq. (5.11) for each path gives:

d Qrey ﬁL?r v
AS' = f Q and = fADB ©
ACB

T

wherein view of Eq. (5.10) the two integrals must be equal. We therefore conclude that AS
isindependent of path and is a property change given by S%, — S%,.

If the fluid is changed from state A to state B by an irreversible process, the entropy
change must till be AS' = §% — %, but experiment shows that this result is not given by
J dQ/ T evauatedfor theirreversibleprocessitsel f, becausethecal cul ation of entropy changes
by thisintegral must in general be along reversiblepaths.

The entropy change of a heat reservoir, however,isawaysgivenby Q/T,where Q is
the quantity of heat transferredto or from the reservoir at temperature T, whether the transfer
isreversibleor irreversible. The reason is that the effect of heat transfer on a heat reservoiris
the sameregardlessof the temperatureof the source or sink of the heat.

If aprocessisreversibleand adiabatic,d Q,., = 0; thenby Eq. (5.11), d$* = 0. Thusthe
entropy of asystemis constant during areversibleadiabatic process, and the processis said to
be isentropic.
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Figure 5.5 Two reversible paths joining equilibrium states A and B

Thisdiscussion of entropy can be summarized as follows:

Entropy owes its existenceto the second law, from whichit arisesin much the same way
as internal energy does from the first law. Equation (5.11) is the ultimate source of all
equationsthat relatetheentropy to measurablequantities. It does not represent adefinition
of entropy; thereis nonein the context of classical thermodynamics. What it providesis
the meansfor calculating changes in this property. Its essential natureis summarized by
the following axiom:

There exists a property called entropy S, which is an intrinsic
property of a system, functionallyrelated to the measurable coor-
dinates which characterize the system. For a reversibleprocess,
changes in this property are given by Eq. (5.11).

The changein entropy of any system undergoingafinite reversible processis:

ASr e /d%‘rev (513)
When a system undergoes an irreversible process between two equilibrium states, the
entropy changeof thesystem A S iseval uatedby applicationaf Eq. (5.13) toanarbitrarily
chosen rever sibleprocessthat accomplishesthesamechangeof stateastheactual process.
Integrationis not carried out for the irreversible path. Since entropy is a state function,
the entropy changes of theirreversibleand reversible processesareidentical.

In the special case of a mechanically reversible process (Sec. 2.8), the entropy change

of the systemis correctly evaluatedfrom [ dQ/T applied to the actual process, even though
the heat transfer between system and surroundings is irreversible. The reason is that it is
immaterial, asfar as the system is concerned, whether the temperaturedifference causing the
heat transfer is differential (making the processreversible) or finite. The entropy change of a
system caused by the transfer of heat can always be calculated by [ dQ/ T, whether the heat
transfer is accomplishedreversibly or irreversibly. However, when a processisirreversibleon
account of finitedifferencesin other driving forces, such as pressure, the entropy changeis not
caused solely by the heat transfer, and for its calculation one must devise a reversible means
of accomplishingthe same change of state.
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This introduction to entropy through a consideration of heat engines is the classical
approach, closely following its actual historical development. A complementary approach,
based on molecular conceptsand statistical mechanics, is considered briefly in Sec. 5.11.

5.5 ENTROPY CHANGES OF AN IDEAL GAS

For one mole or a unit massof fluid undergoing a mechanically reversibleprocessin a closed
system, thefirst law, Eqg. (2.8), becomes:

dU =dQey — PdV
Differentiationof the defining equationfor enthalpy, H = U + PV ,vyields:
dH =dU + PdV +VdP
EliminatingdU gives:
dH =dQiy — PdV + PdV +V dP
or dQuwy=dH -V dP

For anidea gas, dH = C,’;ng and V = RT/P. With these substitutions and then division
by T,

ere\/ . fng dP
A =)
Asaresult of Eg. (5.11), this becomes:
2dT _dP 48 _Grar
dS =Clf—— —~R— e DR TC o
P T RP or R R T dln P

where Sis the molar entropy of an ideal gas. Integrationfrom an initial state at conditions 7y
and P, to afina stateat conditionsT and P gives:

A T elar . i
L0 L :
R J, RT Py RIS

Although derived for a mechanically reversible process, this equation relates propertiesonly,
and isindependent of the processcausing thechange of state. It isthereforea general equation
for the calculation of entropy changesof anideal gas.




160 CHAPTERS. The Second Law of Thermodynamics

Equation (4.4) for the temperature dependence of the molar hest capacity C}f allows
integration of the first term on theright of EQ. (5.14). The resultis conveniently expressed as

PO dT D 1
- — A+ [BTU + (CTO2 + —,—) (E——)] (z=1) (5.15)
-2

n R T 12)\ 2

wh T !
ere T

Since this integral must often be evaluated, we include in App. D representative computer
programsfor its evaluation. For computational purposestheright side of Eq. (5.15) isdefined
asthefunction, ICPS(T0,T;A,B,C,D). Equation (5.15) then becomes:

rictar

L ICPS(T0,T;A,B,C,D)

The computer programs al so cal culatea mean heat capacity defined as:

J2 Ci#dT/T

In(T/Ty) (5.16)

(€ =

Here, the subscript”S" denotes a mean value specific to entropy calculations. Division of
Eq. (5.15) by In(T'/ Tp) or In T thereforeyields:

G [ (en ) (T ()
R =A+|BTh+ (Z'Tﬂ-l-?:z%2 2 nz (5.17)
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Theright sideof thisequationisdefined asanother function, MCPS(T0,T;A,B,C,D). Equation
(5.17) then becomes:

(C)s
R
Solving for theintegral in Eqg. (5.16) gives:

T dT ; T
Cpf— = (CE)sIn —
j;o B = (Chslng

and Eq. (5.14) becomes:

AS [C®%.,. T P
e ot T R 5.18
R~ " "m el

Thisform of the equation for entropy changes of an ideal gas may be useful when iterative
calculationsare required.
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5.6 MATHEMATICAL STATEMENT OF THE SECOND LAW

Consider two heat reservoirs, one a temperature Ty and asecond at the lower temperature 7.
Let aquantity of heat | Q| be transferred from the hotter to the cooler reservoir. The entropy
changesof thereservoirsat Ty and at T are:

—| 0] 10|
i = — d ’ —_ —
ASY T an ASL T
These two entropy changes are added to give:
-0 | 19| Ty —Tc
A = Au ! A £ _—_— —_—— = —_—
Stolal 9H + SC TH =+ TC FQ' ( 5 TC )

SinceTy > T¢,thetotal entropy changeasaresult of thisirreversibleprocessispositive. Also,
A Siora1 becomessmaller asthedifference Ty — T getssmaller.When Ty isonly infinitesimally
higher than T, the heat transferisreversible,and A S, approacheszero. Thusfor the process
of irreversibleheat transfer, A Sy, iSaways positive, approachingzero asthe processbecomes
reversible.

Consider now an irreversibleprocessin aclosed system wherein no heat transfer occurs.
Such a processis represented on the PV diagram of Fig. 5.6, which shows an irreversible,
adiabatic expansion of 1 mol of fluid from an initia equilibrium state at point A to a final
equilibriumstate at point B. Now supposethefluidisrestoredtoitsinitial stateby areversible
processconsisting of two steps: first, the reversible, adiabatic (constant-entropy) compression
of thefluid to theinitial pressure, and second, areversible, constant-pressurestep that restores
the initial volume. If theinitial processresultsin an entropy change of the fluid, then there
must be heat transfer during the reversible, constant-P second step such that:

4 dQrey
Asf=s;~s;=f 2
B

Orev

Irreversible
adiabatic
process

Figure 5.6 Cycle containing an irreversible adiabatic process A to B
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The origina irreversible process and the reversiblerestoration process constitute a cycle for
which AU = 0 and for which the work is therefore:

A
—W = Qrev = f ereV
B

However, according to statement | aof the secondlaw, Qv cannot bedirectedinto thesystem,
for thecyclewould then beaprocessfor thecompleteconversioninto work of the heat absorbed.
Thus, [ d Q. isnegative, and it followsthat S — S} isasonegative;whence Sy > . Since
theoriginal irreversibleprocessisadiabatic(AS,,, = 0), thetotal entropy changeof thesystem
and surroundingsas aresult of the processis A S = S — 5% > 0.

Inarrivingat thisresult, our presumptionisthat theoriginal irreversibleprocessresultsin
anentropy changedf thefluid. If theoriginal processisinfactisentropic, then thesystemcanbe
restoredtoitsinitial state by a simplereversibleadiabatic process. Thiscycleis accomplished
with no heat transfer and therefore with no net work. Thus the system is restored without
leaving any change elsewhere, and this implies that the original processis reversible rather
thanirreversible.

Thusthe sameresult isfound for adiabatic processesasfor direct heat transfer: A Sioral IS
aways positive, approaching zero as alimit when the process becomesreversible. This same
conclusion can be demonstratedfor any process whatever, leading to the general equation:

ASiora = 0 (519)

This mathematical statement of the second law affirms that every
process proceeds in such a direction that the total entropy change
associated with it is positive, the limiting value of zero being attained
only by a reversible process. No process is possible for which the
total entropy decreases.

We return now to acyclic heat enginethat takesin heat | Q | from aheat reservoirat 7y,
and discards heat | Q¢ | to another hesat reservoir at 7. Since the engine operatesin cycles, it
undergoesno net changesin its properties. The total entropy changeof the processis therefore
the sum of the entropy changes of the heat reservoirs:

~|Qwl + |Qc|
Ty Tc

ASioral =

The work produced by theengineis

[W|= Q|- 1Qc| (5.1
Elimination of | Q| between these two equations and solutionfor |W| gives:

Wi =~Te ASou +10a1 (1= 75 )
T

Thisis the general equation for work of a heat engine for temperaturelevels T and 7. The
minimum work output is zero, resulting when the engine is completely inefficient and the
process degeneratesinto simple irreversibleheat transfer between the two heat reservoirs. In
this case solutionfor A S, Yields the equation obtained at the beginning of this section. The
maximum work is obtained when the engineis reversible, in which case A Sy, = O, and the
equation reducesto the second term on the right, the work of a Carnot engine.
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5.7 ENTROPY BALANCE FOR OPEN SYSTEMS

Just as an energy balance can be written for processesin which fluid enters, exits, or flows
through a control volume (Sec. 2.12), so too can an entropy balance be written. There is,
however, an important difference: Entropy is not conserved. The second law states that the
total entropy change associated with any process must be positive, with a limiting value of
zero for areversible process. This requirement is taken into account by writing the entropy
balance for both the system and its surroundings, considered together, and by including an
entropy-generation term to account for the irreversibilitiesof the process. This term is the
sum of three others: one for entropy changesin the streams flowingin and out of the control
volume, one for entropy changes within the control volume, and one for entropy changesin
the surroundings. If the processis reversible, thesethree terms sum to zero so that A S = O.
If the processisirreversible, they sum to a positive quantity, the entropy-generationterm.
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The statement of balance, expressed asrates, is therefore:

Net rate of Timerate of Timerate of
. change of Total rate
change mf + + change of
enropy o entropy entropy in ¢ = { of entropy
. in control . generation
flowing streams surroundings
volume

The equivaent equation of entropy balance is

dmS)ey  dSLy. .
o, i . & 57/
—— +— =520 (5.20)

A(Srit)es +

where S istherate of entropy generation. Thisequationisthe general rateform of theentropy
balance, applicableat any instant. Each term can vary with time. The first termis simply the
net rate of gainin entropy of theflowing streams, i.e., the difference between the total entropy
transported out by exit streams and the total entropy transportedin by entrance streams. The
second term is the time rate of change of the total entropy of the fluid contained within the
control volume. The third term accountsfor entropy changesin the surroundings, the result of
heat transfer between system and surroundings.

Let rate of heat transfer Q; with respect to a particular part of the control surface be
associated with T, ; where subscript a, j denotes a temperature in the surroundings. The
rate of entropy change in the surroundings as a result of this transfer is then —Q, /7, ;. The
minus sign converts Q;, defined with respect to the system, to a heat rate with respect to the
surroundings. The third termin Eq. (5.20)is thereforethe sum of al such quantities:

dS;urr i Z &
di T

Equation (5.20) is now written:

d(mSva Qj

A(Sr)es +
(Srin)y dr —~ T,

— 85 (5.21)

Thefinal term, representingtherate of entropy generation S, reflects the second-law require-
ment that it be positivefor irreversibleprocesses. There are two sourcesof irreversibility: (a)
thosewithin thecontrol volume, i.e., internal irreversibilities,and (b)those resultingfrom heat
transfer across finite temperature differencesbetween system and surroundings, i.e., external
thermal irreversibilities. In the limiting case where S = 0, the process must be completely
reversible, implying:

e The processisinternally reversiblewithin the control volume.
e Heat transfer between the control volume and its surroundingsis reversible.

The second item means either that heat reservoirs are included in the surroundings with
temperatures equal to those of the control surface or that Carnot engines are inter-
posed in the surroundings between the control-surface temperatures and the heat-reservoir
temperatures.
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For a steady-stateflow process the mass and entropy of the fluid in the control volume
are constant, and d(mS).y/dt is zero. Equation (5.21)then becomes:

=L =820 (5.22)

If in addition thereisbut one entranceand oneexit, with m the samefor both streams, dividing
through by 7 yields:

Q,
AS—Z}:‘-'; =58>0 (5.23)
&

Each termin Eq. (5.23)is based on aunit amount of fluid flowing through the control volume.

A=3 mols”
T=400K

ig=2mol s7!

Control Volume
Tp=450 K
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| = 2676.0kJ kg !
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Liquid water at 273.15 K (0°C)
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5.8 CALCULATION OF IDEAL WORK

In any steady-state flow process requiring work, thereis an absol ute minimum amount which
must be expended to accomplish the desired change of state of the fluid flowing through the
control volume. In aprocess producingwork, thereisan absol utemaximumamount which may
be accomplished as theresult of agiven changeof stateof thefluid flowing throughthe control
volume. In either case, the limiting value obtains when the change of state associated with the
process is accomplished completely reversibly. For such a process, the entropy generationis
zero, and Eq. (5.22), writtenfor the uniform surroundingstemperature T,, becomes:

A(Sm)gs — %— =0

or Q=T A(Sr)gs
Substitute this expressionfor Q in the energy baance, Eq. (2.30):
A[(HT L2t zg) e = T, A(Sr) + Wy(rev)

The shaft work, W (rev), is here thework of acompletely reversibleprocess. If given the name
ideal work, Wig.ar, the preceding equation may be rewritten:

Wigea = A[(H + u® + 2g) ti]s, — Ty A(Stin)ss (5.24)
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In most applicationsto chemical processes, the kinetic- and potential-energy terms are negli-
gible compared with the others; in this event Eq. (5.24) reducesto:

Wigea = A(H ) — Tp A(Stit)g | (5.25)

For the special case of asinglestream flowing through the control volume, Eq. (5.25) becomes:

Wideal = (AH — T, AS) (5.26)
Division by m puts this equation on a unit-massbasis:
Wiges = AH — T, AS (5.27)

A completely reversibleprocessis hypothetical, devised solely for determination of the ideal
work associated with a given change of state.

Theonly connection betweenthe hypotheticalreversibleprocess and
an actual process is that it brings about the same change of state as
the actual process.

Our objectiveis to compare the actual work of a process with the work of the hypothetical
reversible process. No description is ever required of hypothetical processes devised for the
calculationof ideal work. One need only realizethat such processesmay aways beimagined.
Nevertheless, an illustration of a hypothetical reversibleprocessisgivenin Ex. 5.7.

Equations (5.24) through (5.27) give the work of a completely reversible process asso-
ciated with given property changesin the flowing streams. When the same property changes
occur in an actual process, the actual work W, (or W) as given by an energy balance, can
be compared with theideal work. When Wiges (Or Wigear) is positive, it is the minimum work
required to bring about agiven changein the propertiesaf the flowing streams, and is smaller
than W;. In this case a thermodynamicefficiency », is defined as theratio of theideal work to
the actual work:

. Wigeal
n:(work required) = o (5.28)

When Wigear (OF Wigea) iSNegative, | Wigea | isthemaximumwork obtai nablefrom agiven change
inthe propertiesof theflowingstreams, and islarger than | W, . In thiscase, thethermodynamic
efficiency is defined as the ratio of the actual work to the ideal work:

W,
n,(work produced) = (5.29)

ideal
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5.9 LOST WORK

Work that is wasted as the result of irreversibilitiesin a processis called lost wor k, Wy,q, and
is defined as the difference between the actual work of a process and theideal work for the

process. Thus by definition,
Wiest = Wy — Wideal

In termsof rates,
Wlost = Ws - Wideﬂl
The actua work rate comesfrom Eq. (2.30):
Wy = A[(H + 3u® + zg) m]s — Q
Theideal work rateis given by Eq. (5.24):
Wisea = A[(H T 302 ¥ 2g) ri]ss — T, A(Srin)s
Substituting these expressionsfor W, and Wig.q in Eq. (5.31) yields:

[ Wios = T, ASri)y, = 0]

For the case of a single surroundingstemperature 7, Eg. (5.22) becomes:

S6 = A(Srit)s — Tg

Multiplicationby 7., gives:
T,5% =1, A(Sm); — Q
Theright sidesof thiseguation and Eq. (5.32) areidentical; therefore,

(5.30)

(5.31)

(3.32)

(5.33)

(5.34)

Since the second law of thermodynamicsrequiresthat Si; > 0, it followsthat Wiog = O.
When a process is completely reversible, the equality holds, and the lost work is zero. For
irreversible processes the inequality holds, and the lost work, i.e., the energy that becomes

unavailablefor work, is positive.
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The engineering significance of this result is clear: The greater the
irreversibility of a process, the greater the rate of entropy production
and the greater the amount of energy that becomes unavailable for
work. Thus every irreversibility carries with it a price.

For the special case of a single stream flowing through the control volume,

“flosl = mTa AS - Q (535)
Division by m makesthe basisa unit amount of fluid flowing through the control volume:
Wiest = T AS — Q (536)
Similarly, for asingle stream, Eq. (5.33) becomes:
Sc=mAS — Tg (5.37)
Division by m changes the basisto a unit amount of fluid flowing through the control volume:
so=as- 2 (5.38)

a

Equations (5.36) and (5.38) combine for a unit amount of fluid to give:
Wiest = IS¢ (5.39)

Again, since Sg = 0, it follows that Wios: s O.




5.9. Lost Work 175




176 CHAPTERS5. The Second Law of Thermodynamics

5.10 THE THIRD LAW OF THERMODYNAMICS

M easurementsof heat capacitiesat very low temperaturesprovidedatafor the cal culationfrom
Eq. (5.13) of entropy changes down to O K. When these calculations are made for different
crystallineformsof the samechemical species, theentropy at OK appearsto bethe samefor all
forms. When theform is noncrystalline, e.g., amorphousor glassy, calculationsshow that the
entropy of themorerandomformisgreater than that of the crystallineform. Such calculations,
which are summarized elsewhere, lead to the postulate that the absolute entropy is zero for
all perfect crystalline substances at absolute zero temperature. Whilethe essential ideas were
advanced by Nernst and Planck at the beginning of the twentieth century, more recent studies
a very low temperatures have increased confidencein this postulate, which is now accepted
asthe third law.

If the entropy iszero at T = 0 K, then Eqg. (5.13) lends itself to the calculation of
absoluteentropies. With T = 0 asthelower limit of integration, the absolute entropy of agas
at temperature T based on calorimetric datais:

1 (Cp) AHy L (Cp) AH, ff (Cp),
S= i u2Y g W diide X XA AT 5.40)
,/; T ® Ty "'L T £3 T n T (

Thisequation®is based on the suppositionthat no solid-statetransitionstake place and thusno
heats of transition need appear. The only constant-temperatureheat effectsare those of fusion
at Ty and vaporizationat T,,. When a solid-phasetransition occurs, aterm A H;/ T, is added.

2K. S. Pitzer, Thermodynamics, 3d ed., chap. 6, McGraw-Hill, New York, 1995.
3Evaluation of the first term on theright is not a problem for crystalline substances, because Cp /7 remains finite
asT — 0.



5.11. Entropy fromthe Microscopic Viewpoint 177

5.11 ENTROPY FROM THE MICROSCOPIC VIEWPOINT

Becausethemoleculesdf anideal gasdo not interact, itsinternal energy resideswith individual
molecules. Thisis not true of the entropy. The microscopicinterpretation of entropy is based
on an entirely different concept, as suggested by the following example.

Suppose an insulated container, partitionedinto two equal volumes, contains Avogadro's
number N4 of ideal-gas moleculesin one section and no moleculesin the other. When the
partition is withdrawn, the moleculesquickly distribute themselves uniformly throughout the
total volume. The processis an adiabatic expansion that accomplishesno work. Therefore,

AU =Cy AT =0

and the temperature does not change. However, the pressure of the gas decreases by half, and
the entropy change as given by Eq. (5.14) is:

Sincethisisthetotal entropy change, the processis clearly irreversible.

At the instant when the partition is removed the molecules occupy only half the space
availableto them. In this momentary initial state the molecules are not randomly distributed
over thetotal volume to which they have access, but arecrowded into just half thetotal volume.
In this sense they are more ordered than they are in the final state of uniform distribution
throughout the entire volume. Thus, the final state can be regarded as a more random, or
more disordered, state than the initial state. Generalizing from this example, oneisled to the
notion that increasing disorder (or decreasing structure) on the molecular level correspondsto
increasing entropy.

The meansfor expressing disorder in aquantitativeway was developed by L. Boltzmann
and J. W. Gibbsthrough aquantity €2, defined as the number of different ways that microscopic
particles can be distributed among the "' states" accessible to them. It is given by the general
formula:

n!
(myDna)nsl) -

wheren isthetotal number of particles, and n, ny, n3, €tc., represent the numbers of particles
in"states" 1, 2, 3, etc. Theterm " state' denotesthe condition of the microscopicparticles, and
the quotation marks distinguish this idea of state from the usual thermodynamic meaning as
applied to a macroscopic system.

With respect to our examplethereare but two " states," representinglocation in one half
or the other of the container. The total number of particlesis N4 molecules, and initially they
areadl in asingle "state."” Thus

(5.41)

_ iVA! i 1

C(NahOy

This result confirms that initially the moleculescan be distributed between the two accessible
"gates" injust oneway. They areall in agiven"date," al in just one haf of the container. For

an assumed final condition of uniformdistributionaof the molecul es between the two halves of
thecontainer,n; = n, = N4/2, and

£

Ny!

Q= —
27 N4/
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This expression gives a very large number for €2,, indicating that the moleculescan be
distributed uniformly between the two " states™ in many different ways. Many other values of
€2, are possible, each one of which is associated with a particular nonuniform distribution of
the moleculesbetween the two halvesof the container. The ratio of a particular €2, to the sum
of all possiblevaluesis the probability of that particular distribution.

The connection established by Boltzmann between entropy S and 2 is given by the
equation:

S=kInQ (5.42)

wherek is Boltzmann's constant, equal to R/ N 4. Integration between states1 and 2 yields:

1973
S — S =kln—
2 1 HQ]

Substituting valuesfor €2, and 2, from our exampleinto this expression gives:
!

N4
SQ—Sl=kl W k[]ﬂNA —ZIU{NA/'Z)H

Since N, is very large, we take advantageof Stirling's formulafor thelogarithmsof factorials
of large numbers:
hhX!'=XIhX-X

N N N
Sv—s.~k[mnm,, —NA—2(_A] ._A__A)]

=kN,In2=RIn2

and as aresult,

kN4l Na
= n
AT Na2
Thisvaluefor theentropy changeof theexpansionprocessisthesameasthat givenby Eq.(5.14),
the classical thermodynamicformulafor ideal gases.

Equations (5.41) and (5.42) are the basisfor relating thermodynamic propertiesto sta-
tistical mechanics(Sec. 16.4).

PROBLEMS

5.1. Provethat it isimpossiblefor two lines representing reversible, adiabatic processeson
a PV diagramtointersect. (Hint: Assumethat they do intersect, and completethe cycle
with aline representingareversible,isothermal process. Show that performanceof this
cycleviolatesthe second law.)

5.2. A Carnot engine receives 250 kW of heat from a heat-source reservoir at 798.15 K
(525°C) and rejectsheat to a heat-sink reservoir at 323.15 K (50°C). What are the power
developed and the hest rejected?

5.3. Thefollowing heat engines produce power of 95 000 kW. Determinein each case the
ratesat which heat i s absorbedfrom the hot reservoirand discarded to the cold reservoir.
(a) A Carnot engine operates between heat reservoirsat 750 K and 300 K.
(b) A practical engine operates between the same heat reservoirs but with a thermal
efficiency n = 0.35.
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5.4.

5.5.

5.6.

5.7.

5.8.

59.

5.10.

A particular power plant operates with a heat-source reservoir at 623.15 K (350°C)and

aheat-sink reservoir at 303.15 K (30°C).It has athermal efficiency equal to 55% of the

Carnot-enginethermal efficiency for the same temperatures.

(a) What is thethermal efficiency of the plant?

(b) Towhat temperature must the heat-sourcereservoir beraised toincreasethethermal
efficiency of the plant to 35%? Again n is55% of the Carnot-engine value.

An egg, initialy at rest, is dropped onto a concrete surface; it breaks. Prove that the
processisirreversible. In modeling this processtreat the egg as the system, and assume
the passage of sufficient timefor the egg to return toitsinitial temperature.

Which is the more effective way to increase the thermal efficiency of a Carnot engine:
toincrease Ty with T¢ constant, or to decrease T¢ with Ty constant? For areal engine,
which would be the more practical way?

Large quantities of liquefied natural gas (LNG) are shipped by ocean tanker. At the
unloading port provision ismadefor vaporization of the LNG so that it may bedelivered
to pipelines asgas. The LNG arrivesin the tanker at atmospheric pressureand 113.7 K,
and represents a possible heat sink for use as the cold reservoir of a heat engine. For
unloading of LNG asavapor at therateof 9000 m®s~!, as measured at 298.15 K (25°C)
and 1.0133 bar, and assuming the availability of an adequate heat source at 303.15 K
(30°C), what is the maximum possible power obtainable and what is the rate of heat
transfer from the heat source? Assume that LNG at 298.15 K (25°C)and 1.0133 bar
is an ideal gas with the molar mass of 17. Also assume that the LNG vaporizes only,
absorbing only its latent heat of 512 kJ kg~! at 113.7 K.

With respect to 1 kg of liquid water:

(a) Initialy at 273.15 K (0°C), it is heated to 373.15 K (100°C)by contact with a heat
reservoir at 373.15 K (100°C).What isthe entropy change of the water? Of the heat
reservoir? What is A S ?

(b) Initialy at 273.15 K (0°C), it isfirst heated to 323.15 K (50°C) by contact with a
heat reservoir at 323.15 K (50°C)and then to 373.15 K (100°C) by contact with a
reservoir at 373.15 K (100°C).What is A Sy4?

(c) Explain how the water might be heated from 273.15 K (0°C) to 373.15 K (100°C)
so that AStotal =0.

A rigid vessel of 0.06 m® volume contains an ideal gas, Cy = (5/2)R, at 500 K and

1 bar.

(a) If heatintheamount of 15 kJ istransferred to the gas, determineits entropy change.

(b) If thevessdl isfitted with astirrer that isrotated by ashaft so that work in the amount
of 15 kJ isdone on the gas, what is the entropy change of the gasif the process is
adiabatic? What is A S ? What is theirreversible feature of the process?

Anideal gas, Cp = (7/2)R, is heated in a steady-flow heat exchanger from 343.15 K
t0463.15 K (70°C to 190°C) by another stream of the sameideal gas which enters at
593.15 K (320°C).Theflow rates of the two streams are the same, and heat |osses from
the exchanger are negligible.
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(a) Calculate the molar entropy changes of the two gas streamsfor both parallel and
countercurrent flow in the exchanger.
(b) What is A Sy in each case?
(¢) Repeat parts (a) and (b) for countercurrent flow if the heating stream enters at
473.15K (200°C).
5.11. For anideal gas with constant heat capacities, show that:
(a) For atemperaturechangefrom T; to T, ASof the gasis greater when the change
occurs at constant pressurethan when it occurs at constant volume,
(b) For a pressure change from P, to P, the sign of ASfor an isothermal changeis
oppositethat for a constant-volumechange.
5.12. For anideal gas provethat:
AS f" Cl AT v
R , R T Vo
5.13. A Carnot engine operates between twofinite heat reservoirsof total heat capacity C,
and C..
(a) Develop an expressionrelating T¢ to Ty at any time.
(b) Determine an expression for the work obtained as a function of C%;, C¢., Ty, and
theinitial temperatures Ty, and Tc,.
(c) What isthe maximum work obtai nable?This correspondsto infinitetime, when the
reservoirsattain the same temperature.
In approaching this problem, use the differential form of Carnot’s equation,
d0n _ _Tu
dQc Tc
and a differential energy balancefor the engine,
dW —dQ¢c —dQyg =0
Here, Q¢ and Q y refer to the reservoirs.
5.14. A Carnot engine operatesbetween aninfinitehot reservoir and a finite cold reservoir of
total heat capacity Cr..
(a) Determinean expressionfor thework obtained asafunctionof Cf., Ty (= constant),
T¢, and theinitial cold-reservoirtemperature Ic,.
(b) What isthe maximum work obtainable? This correspondsto infinitetime, when T¢
becomesequal to Ty .
The approachto this problemis the ssme asfor Pb. 5.13.
5.15. A heat engine operating in outer space may be assumed equivalent to a Carnot engine

operating between reservoirs at temperatures 7y and T¢. The only way heat can be
discardedfrom theengineis by radiation, therate of whichisgiven (approximately)by:

|Qc| = kAT¢
where k is a constant and A is the area of the radiator. Prove that, for fixed power

output |W| and for fixed temperature Ty, the radiator area A is a minimum when the
temperatureratio T7¢/Ty is0.75.
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5.16.

5.17.

5.18.

5.19.

5.20.

Imaginethat astream of fluidin steady-stateflow servesas a heat sourcefor an infinite
set of Carnot engines, each of which absorbsadifferential amount of heat from thefluid,
causing its temperatureto decrease by a differential amount, and each of which rejects
a differential amount of hesat to a heat reservoir a temperature T, As aresult of the
operation of the Carnot engines, the temperature of the fluid decreasesfrom T; to T>.
Equation (5.8) applies herein differential form, whereiny is defined as:

n=dw/dQ

where Q is heat transfer with respect to the flowing fluid. Show that the total work of
the Carnot enginesis given by:

W=0Q—T,AS

where AS and Q both refer to the fluid. In a particular case the fluid is an ideal gas,
Cp = (7/2)R,forwhich T} = 600 K and 7; = 400 K. If T, = 300 K, what isthevalue
of W inJ mol~!? How much heat is discarded to the heat reservoir at T? What isthe
entropy change of the heat reservoir?What is A Sy ?

A Carnot engine operates between temperature levels of 600 K and 300 K. It drives
a Carnot refrigerator, which provides cooling a 250 K and discards heat a 300 K.
Determineanumerical valuefor theratio of heat extracted by the refrigerator (** cooling
load") to the heat deliveredto the engine ("' heatingload™).

Anideal gas with constant heat capacitiesundergoesa changeof statefrom conditions
Ty, P, toconditions T», P;. Determine AH (I mol~!) and AS(J mol~! K~!) for oneof
thefollowing cases.

(a) Ty =300K, P, =12bar, 7, =450 K, P, =6bar, Cp /R =17/2.

(b) T; =300 K, Py = 12bar, T, =500 K, P, = 6 bar, Cp/R = 7/2.

(c) T1 =450 K, P; = 10 bar, T, = 300 K, P, = 2bar, Cp/R = 5/2.

(d) Ty =400 K, P, =6 bar, T, = 300K, P, = 12 bar, Cp/R = 9/2.

(€ T' =500K, P, =6bar, T, =300K, P, =12 ba,Cp/R =4.

Anidedl gas, Cp = (7/2)R and Cy = (5/2)R, undergoes a cycle consisting of the
following mechanically reversiblesteps:

e An adiabatic compressionfrom Pi, Vi, Ti to P, Vo, Tp.

e Anisobaricexpansionfrom P, V,, 75 t0 Ps = Py, V3, Ts.

e An adiabatic expansionfrom P;, V3, T5 to Py, V4, Ty.

e A constant-volumeprocessfrom P4, Vy, Ty to Py, Vi = Vi, 1.

Sketchthiscycleona PV diagramand determineitsthermal efficiency if 7; = 473.15K
(200°C), T, = 773.15 K (500°C), T3 = 1973.15 K (1700°C), and 7, = 973.15 K
(700°C).

Theinfiniteheat reservoir is an abstraction, often approximatedin engineering applica-
tionsby largebodiesof air or water. Apply theclosed-systemform of theenergy balance
[EQ. (2.3)] to such areservair, treating it as a constant-volumesystem. How isit that
heat transfer to or from thereservoir can be nonzero, yet the temperatureof thereservoir
remains constant?
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5.21.

5.22.

5.23.

5.24.

5.25.

5.26.

5.27.

5.28.

5.20.

Onemoleof anideal gas, Cp = (7/2)R and Cy = (5/2)R, iscompressed adiabatically
in a pistonlcylinder device from 2 bar and 298.15 K (25°C) to 7 bar. The processis
irreversibleand requires 35% more work than a reversible, adiabatic compressionfrom
the sameinitial state to the samefinal pressure. What isthe entropy change of the gas?

A massm of liquid water at temperature Ty is mixed adiabatically and isobarically with
an equal massof liquid water at temperature 7;. Assuming constant Cp, show that
(T + T)/2

(IiT)'?
and provethat thisis positive. What would be theresult if the massesof the water were
different, say, m| and m3y?

AS" = ASipa1 = Sg =2mCpln

Reversible adiabatic processes are isentropic. Are isentropic processes necessarily
reversibleand adiabatic?If so, explainwhy; if not, givean exampleillustratingthe point.

Prove that the mean hesat capacities (Cp)x and {Cp)s are inherently positive, whether
T > Tpor T < Tp. Explainwhy they are well definedfor T = Tj.

A reversible cycle executed by 1 mol of an ideal gas for which Cp = (5/2)R and
Cy = (3/2)R consistsof the following:

e Startingat 7; = 700 K and P, = 1.5 bar, the gasis cooled at constant pressure
to 7, = 350 K.

e From 350 K and 1.5 bar, the gas is compressed isothermally to pressure P.

e Thegasreturnstoitsinitial state along a path for which PT = constant.

What is the thermal efficiency of the cycle?

One mole of an ideal gas is compressed isothermally but irreversibly at 403.15 K
(130°C) from 2.5 bar to 6.5 bar in a piston/cylinder device. The work required is 30%
greater than the work of reversible, isothermal compression. The hesat transferredfrom
the gas during compression flows to a heat reservoir at 298.15 K (25°C). Calculatethe
entropy changesof the gas, the heat reservoir, and A Syt

For a steady-flow process at approximately atmospheric pressure, what is the entropy
change of thegas:

(a) When 10 mol of SO; isheated from 473.15to 1373.15K (200 to 1100°C)?
(b) When 12 rnal of propaneis heated from 523.15 to 1473.15K (250 to 1200°C)?

What isthe entropy change of the gas, heated in a steady-flow processat approximately
atmospheric pressure,
(a) When 800 kJ is added to 10 mal of ethyleneinitially at 473.15K (200°C)?

(b) When 2500k7 isadded to 15 mol of 1-butene initially at 533.15 K (260°C)?
(c) When 1.055 GJisadded to 18.14 kmol of ethyleneinitially at 533.15 K (260°C)?

A device with no moving parts provides a steady stream of chilled ar at
248.15 K (—25°C) and 1 bar. The feed to the device is compressed air at 298.15 K
(25°C) and 5 bar. In addition to the stream of chilled air, a second stream of warm air
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5.30.

5.31

5.32.

5.33.

5.34.

5.35.

5.36.

flows from the device at 348.15 K (75°C) and 1 bar. Assuming adiabatic operation,
what istheratio of chilled air to warm air that the device produces? Assumethat air is
an ideal gasfor which Cp = (7/2)R.

An inventor has devised a complicated nonflow processin which 1 mol of air is the
working fluid. The net effectsaof the processare claimed to be:

e A changein state of theair from 523.15 K (250°C) and 3 bar to 353.15 K (80°C)
and 1 bar.

e The productionof 1800 J of work.
e Thetransferof an undisclosedamountof heat toaheat reservoirat 303.15K (30°C).

Determine whether the claimed performance of the process is consistent with the
second law. Assumethat air isan ideal gasfor which Cp = (7/2)R.

Consider the heating of ahouseby afurnace, which serves as aheat-sourcereservoirat a
high temperature 7. The house acts as a heat-sink reservoir at temperature T , and heat
| Q| must be added to the houseduring a particul ar timeinterval to maintainthistempera-
ture. Heat | Q| canof coursebetransferreddirectly fromthefurnaceto thehouse, asisthe
usual practice. However, athird heat reservoirisreadily available, namely, the surround-
ingsat temperature?,,, which can serveas another heat source, thusreducingtheamount
of heat requiredfrom thefurnace. Giventhat Tr = 810K, T = 295K, T, = 265K, and
| Q| = 1000 kJ, determine the minimum amount of heat | Q | which must be extracted
from the heat-sourcereservoir (furnace) at 7r . No other sourcesaof energy areavailable.

Consider the air conditioning of a house through use of solar energy. At a particular
location experiment has shown that solar radiation allows a large tank of pressurized
water to be maintained at 448.15 K (175°C). During a particular time interval, heat in
the amount of 1500 kJ must be extracted from the house to maintainits temperature at
297.15 K (24°C) when the surroundingstemperatureis 306.15 K (33°C). Treating the
tank of water, thehouse, and the surroundingsas heat reservoirs,determinetheminimum
amount of heat that must be extracted from the tank of water by any device built to
accomplishthe required cooling of the house. No other sourcesof energy areavailable.

A refrigeration system cools a brine from 298.15 K to 258.15 K (25°C to —15°C) at
the rate 20 kg s™!. Heat is discarded to the atmosphere at a temperature of 303.15 K
(30°C). What is the power requirement if the thermodynamicefficiency of the system
i$0.27? The specific heat of the brineis3.5kJ kg~! K.

An electric motor under steady load draws9.7 amperesat 110 volts; it delivers0.93 kW
of mechanical energy. The temperaturedf the surroundingsis 300 K. What is the total
rate of entropy generationin W K—1?

A 25-ohm resistor at steady state draws a current of 10 amperes. Its temperatureis
310 K; the temperatureof the surroundingsis 300 K. What is the total rate of entropy
generation S5 ? What isits origin?

Show how thegeneral rateform of theentropy balance, Eq. (5.21), reducesto Eg. (5.19)
for the case of aclosed system.
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A list of common unit operationsfollows:

(a) Single-pipe heat exchanger; (») Double-pipeheat exchanger; (c) Pump;

(d) Gascompressor: (€) Gas turbine (expander) ; (f) Throttle valve: (g) Nozzle.
Develop a simplified form of the general steady-state entropy balance appropriate to
each operation. State carefully, and justify, any assumptionsyou make.

Ten kmol per hour of air is throttled from upstream conditions of 298.15 K (25°C)
and 10 bar to a downstream pressure of 1.2 bar. Assume air to be an ideal gas with
Cp=(7/2)R.

(a) What isthe downstreamtemperature?

(b) What isthe entropy change of theair in Jmol~! K~1?

(c) What istherate of entropy generationin W K12

(d) If thesurroundingsare at 293.15 K (20°C), what is thelost work?

A steady-flow adiabatic turbine (expander) accepts gas a conditions T;, P, and
dischargesat conditions 73, P,. Assumingideal gases, determine (per mole of gas) W,
Wigeal, Wiost, and S¢ for one of thefollowing cases. Take T, = 300 K.

(a) T, =500K, P, =6ba, I, = 371K, P, = 1.2 bar, Cp/R=17/2.

(b) T} = 450K, Py =5bar, T, = 376K, P, = 2bar, Cp/R = 4.

(¢c) Ty = 525K, Py = 10 bar, T, = 458K, P, = 3bar, Cp/R=11/2.

(d) T) = 475K, Py = 7bar, T, = 372K, P, = 1.5bar, Cp/R = 9/2.

(e) T, =550K, Py =4bar, T, =403K, P, =12 bar, Cp/R = 5/2.

Consider thedirect heat transfer from a heat reservoir at 7 to another heat reservoir at
temperature?,, where Ty > T, > T, Itisnotobviouswhy thelost work of thisprocess
should depend on 7, the temperature of the surroundings, because the surroundings
are not involved in the actual heat-transfer process. Through appropriate use of the
Carnot-engineformula, show for the transfer of an amount of heat equal to | Q| that
-1,
Wioy = |—= =T,
lost = 15| Q| T, S

Anideal gas at 2500 kPa is throttled adiabatically to 150 kPa at the rate of 20 mol s™!.
Determine Sg and Wog if 7, = 300 K.

Aninventor claimsto havedevised acyclicenginewhich exchangesheat withreservoirs
a 298.15 K t0 523.15 K (25°C and 250°C), and which produces 0.45 kJ of work for
each kJ of heat extracted from the hot reservoir. Is the claim believable?

Heat in the amount of 150 kJ istransferred directly from ahot reservoir at Tp= 550 K
to two cooler reservoirsat 7} = 350 K and 7; = 250 K. The surroundingstemperatrue
is T, = 300 K. If the heat transferredto thereservoir at T; is haf that transferredto the
reservior at 7, calcul ate:

(a) Theentropy generationin kJ K1,
(b) Thelost work.

How could the process be made reversible?

A nuclear power plant generates 750 MW; the reactor temperatureis 588.15 K (315°C)
and ariver with water temperatureof 293.15K (20°C) isavailable.
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(a) What is the maximum possible thermal efficiency of the plant, and what is the
minimum rate at which heat must be discarded to the river?

(b) If the actual thermal efficiency of the plant is 60% of the maximum, at what rate
must heat be discarded to the river, and what is the temperaturerise of the river if
it has aflowrate of 165 m®s—1?

5.45. A singlegas stream entersa processat conditions 7y, Py, and leavesat pressure P,. The
process is adiabatic. Prove that the outlet temperature 75 for the actual (irreversible)
adiabatic processis greater than that for areversible adiabatic process. Assumethe gas
isideal with constant heat capacities.



