Chapter 3

Volumetric Properties of
Pure Fluids

Thermodynamic properties, such as internal energy and enthal py, from which one calculates
the heat and work requirements of industrial processes, are often evaluated from volumetric
data. Moreover, pressure/volume/temperature (PV T ) relations are themselvesimportant for
such purposes as the metering of fluids and the sizing of vessels and pipelines. We therefore
first describe the general nature of the PV T behavior of pure fluids. Therefollowsa detailed
treatment of the ideal gas, the simplest realistic model of fluid behavior. Equations of state
are then considered, as they provide the foundation for quantitative description of real fluids.
Finally, generalized correlations are presented that allow predictionof the PV T behavior of
fluidsfor which experimental data are lacking.

3.1 PVTBEHAVIOR OF PURE SUBSTANCES

Measurementsof the vapor pressure of a pure substance, both as a solid and as aliquid, lead
to pressure-vs.-temperature curves such as shown by lines 1-2 and 2-C in Fig. 3.1. The third
line (2-3)gives the solid/liquid equilibriumrelationship. The threelinesdisplay conditionsof
Pand T at which two phases may coexist, and are boundariesfor the single-phase regions.
Line 1-2, the sublimation cuwe, separatesthe solid and gasregions; line 2-3, the fusion cuwe,
separates the solid and liquid regions; line 2-C, the vaporization cuwe, separatesthe liquid
and gas regions. All three lines meet at the triple point, where the three phases coexist in
equilibrium. Accordingto the phaserule, Eq. (2.7), thetriple pointisinvariant (F = 0). If the
system exists along any of the two-phaselinesof Fig. 3.1, itis univariant (F = 1), whereasin
the single-phaseregionsit is divariant (F = 2).

The vaporization curve 2-C terminatesat point C, the critical point. The coordinates of
this point arethe critical pressure P, and the critical temperature 7, the highest pressure and
highest temperatureat which a pure chemical speciescan exist in vapor/liquid equilibrium.

Homogeneousfluids are usualy classified as liquids or gases. However, the distinction
cannot awaysbe sharply drawn, becausethetwo phases becomeindistinguishabl eat thecritical
point. Paths such as the one shownin Fig. 3.1 from A to B lead from theliquid region to the
gas region without crossing a phase boundary. Thetransitionfrom liquid to gasis gradual. On
the other hand, paths which cross phase boundary 2-C include a vaporization step, where an
abrupt change from liquid to gas occurs.
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The area existing at temperaturesand pressuresgreater than T, and P, is marked off by
dashed linesin Fig. 3.1, which do not represent phase boundaries, but rather are limits fixed
by the meanings accorded the words liquid and gas. A phaseis generally considered aliquid
if vaporizationresultsfrom pressurereduction at constant temperature. A phaseis considered
agasif condensation results from temperature reduction at constant pressure. Since neither
processoccursin the area beyond the dashed lines, it is called the fluid region.

The gas region is sometimes divided into two parts, as indicated by the dotted vertical
lineof Fig. 3.1. A gastotheleft of thisline, which can be condensed either by compression at
constant temperatureor by coolingat constant pressure,iscalledavapor. Theregioneverywhere
to theright of thisline, whereT > T, including the fluid region, istermed supercritical.
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Figure 3.1 PT diagram for a pure substance

PV Diagram

Figure 3.1 does not provideany informationabout volume; it merely displaysthe phasebound-
arieson a PT diagram. On a PV diagram [Fig. 3.2(a)] these boundariesbecome aress, i.e.,
regions where two phases, solid/liquid, solid/vapor, and liquid/vapor, coexist in equilibrium.
For agiven T and P, the relative amounts of the phases determine the molar (or specific)
volume. The triple point of Fig. 3.1 here becomes a horizontal line, where the three phases
coexist at a single temperatureand pressure.

Figure 3.2(b) showsthe liquid, liquid/vapor, and vapor regions of the PV diagram, with
four isotherms superimposed. Isotherms on Fig. 3.1 are vertical lines, and at temperatures
greater than 7, do not cross a phase boundary. On Fig. 3.2(b) theisothermlabeled T > T is
therefore smooth.

Thelineslabeled T and T; arefor subcritical temperatures,and consist of threesegments.
Thehorizontal segment of eachisothermrepresentsall possiblemixturesof liquid and vaporin
equilibrium, rangingfrom 100% liquid at theleft end to 100% vapor at theright end. Thelocus
of theseend pointsisthedome-shaped curvelabeled BCD, theleft half of which (from B to C)
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Figure 32 PV diagrams for a pure substance. (a) Showing solid, liquid, and gas
regions. (b) Showing liquid, liquid/vapor, and vapor regions with isotherms

representssingle-phase(saturated) liquidsat their vaporization (boiling) temperatures,and the
right half (from C to D), single-phase (saturated) vapors at their condensation temperatures.
The horizontal portion of anisothermliesat a particular saturation or vapor pressure, given by
the point on Fig. 3.1 wheretheisotherm crosses the vaporizationcurve.

Thetwo-phaseliquid/vapor region lies under dome B CD, whereas the subcool ed-liquid
and superheated-vapor regions lie to the left and right, respectively. Subcooled liquid exists
at temperaturesbelow, and superheated vapor, at temperaturesabove the boiling point for the
given pressure. | sothermsin the subcool ed-liquidregion arevery steep, becauseliquid volumes
changelittle with large changesin pressure.

The horizontal segmentsof theisothermsin the two-phaseregion becomeprogressively
shorter at higher temperatures, being ultimately reduced to a point at C. Thus, the critical
isotherm, labeled 7., exhibits a horizontal inflection at the critical point C at the top of the
dome. Heretheliquid and vapor phasescannot be distingui shedfrom each other, becausetheir
propertiesare the same.

Critical Behavior

Insight into the nature of the critical point is gained from a description of the changes that
occur when a pure substanceis heated in a sealed upright tube of constant volume. The dotted
vertical linesof Fig. 3.2() indicatesuch processes. They may also betracedonthe P T diagram
of Fig. 3.3, where the solid line is the vaporization curve (Fig. 3.1), and the dashed lines are
constant-volumepathsin thesingle-phaseregions. If thetubeisfilled with either liquid or gas,
the heating process produces changes which lie along the dashed lines, e.g., by the change
from E to F (subcooled-liquid) and by the change from G to H (superheated-vapor). The
corresponding vertical lineson Fig. 3.2(b) lieto theleft and to theright of BCD.
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Liquid

Figure 33 PT diagram for a pure fluid showing the vapor-pressure curve and
constant-volume lines in the single-phase regions

If the tube is only partialy filled with liquid (the remainder being vapor in equilib-
rium with the liquid), heating at first causes changes described by the vapor-pressurecurve
(solid line) of Fig. 3.3. For the processindicated by line JQ on Fig. 3.2(5), the meniscusis
initially near the top of the tube (point J), and the liquid expands upon heating until it com-
pletely fills the tube (point Q). On Fig. 3.3 the process traces a path from (J, K) to Q, and
with further heating departs from the vapor-pressurecurve along the line of constant molar
volume V.

The processindicated by line KN on Fig. 3.2(b) starts with alower meniscuslevel in
the tube (point K); heating causesliquid to vaporize, and the meniscusrecedesto the bottom
of the tube (point N). On Fig. 3.3 the process traces a path from (J, K) to N. With further
heating the path continues along theline of constant molar volume V.

For auniquefilling of thetube, with a particul arintermediatemeniscuslevel, the heating
processfollowsavertical lineon Fig. 3.2(5) that passesthroughthecritical point C. Physicaly,
heating does not produce much change in the level of the meniscus. As the critical point is
approached, the meniscus becomesindistinct, then hazy, and finaly disappears. On Fig. 3.3
the path first follows the vapor-pressurecurve, proceeding from point (J, K) to the critical
point C, whereit entersthe single-phasefluid region, and follows V., theline of constant molar
volume equal to thecritical volume of the fluid.

Single-Phase Region

For the regions of the diagram where a single phase exists, Fig. 3.2(») implies a relation
connecting P, V, and T which may be expressed by the functional equation:

f(P,V,Ty=0
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This means that an equation d state exists relating pressure, molar or specific volume, and
temperaturefor any pure homogeneousfluid in equilibrium states. The simplest equation of
stateisfor an ideal gas, PV = RT, arelation which has approximate validity for the low-
pressuregas region of Fig. 3.2(b), and which isdiscussedin detail in Sec. 3.3.

An equation of state may be solved for any one of the three quantities P, V, or T as
a function of the other two. For example, if V is considered a function of T and P, then

V = V(T, P),and
av v

dv=(=) ar +( = ;

(BT)Pd +(ap)rd‘° 3.1)

The partial derivativesin this equation have definite physical meanings, and are related to two
properties, commonly tabulatedfor liquids, and defined asfollows:

e Volume expansivity: B= % (z—;’)}) 3.2)
m Isothermal compressibility: « = — L (&_V) (3.3)
V3P /,
Combinationaof Egs. (3.1) through (3.3) providesthe equation:
%zﬁd?‘—xd}’ 3.4

Theisothermsfor theliquid phaseon theleft sideof Fig. 3.2(b) arevery steep and closely
spaced. Thus both (8V /37T)p and (8V /0 P)y and hence both g and k are small. This char-
acteristic behavior of liquids (outsidethe critical region) suggests an idealization, commonly
employed in fluid mechanics and known as the incompressible fluid, for which both g and
are zero. No real fluid is truly incompressible, but the idealization is useful, because it often
provides a sufficiently realistic model of liquid behavior for practical purposes. Thereis no
PV T equation of statefor anincompressiblefluid, because V isindependentof T and P.

For liquids 8 is amost aways positive (liquid water between 273.15K (0°C) and
277.15K (4°C)isanexception),and k isnecessarily positive. At conditionsnot closeto thecrit-
ical point, 8 andk areweak functionsof temperatureand pressure. Thusfor small changesin T
and P littleerror isintroducedif they are assumed constant. Integrationof Eqg. (3.4) thenyields:

V-
In VT =BT — T)) — k(P — Py) (3.5)

Thisis aless restrictiveapproximationthan the assumption of an incompressiblefluid.
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3.2 VIRIAL EQUATIONS OF STATE

Figure 3.2indicates the complexity of the PVT behavior of a pure substance and suggeststhe
difficulty of its description by an equation. However, for the gas region alonerelatively simple
equations often suffice. Along a vapor-phase isotherm such as T} in Fig. 3.2(b), V decreases
as P increases. The PV product for a gas or vapor should therefore be much more nearly
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constant than either of its members, and hence more easily represented. For example, PV
along an isotherm may be expressed asafunction of P by apower series:

PV =a+bP +cP*+.-..
If b=aB’, c=al’,etc., then,
PV =q(1t+BP+cpP2tDP+..) (3.6)

wherea, B', C’, etc., are constantsfor a given temperature and a given chemical species.

In principle, theright side of Eq. (3.6) is an infinite series. However, in practiceafinite
number of termsis used. In fact, PVT data show that at low pressures truncation after two
terms usually provides satisfactory results.

Ideal-Gas Temperatures; Universal Gas Constant

Parameters B', C, etc., in Eq. (3.6) are species dependent and functionsof temperature, but
parameter a isthesamefunction of temperaturefor all species. Thisisshownexperimentally by
measurementsof volumetricdataas afunctionof P for various gases at constant temperature.
Figure 3.4, for example, isaplot of PV vs. P for four gases at the triple-point temperature
of weter. The limiting value of PV as P — 0 is the samefor all of the gases. In this limit
(denoted by the asterisk), Eq. (3.6) becomes:

(PV)' =a=f(T)

Itisthisproperty of gasesthat makesthem valuablein thermometry, becausethelimiting
valuesare used to establish atemperaturescal ewhichisindependentof thegas used asthermo-
metricfluid. Thefunctional relationshipf (T) and aquantitative scalemust beestablished; both
stepsare completely arbitrary. Thesimplest procedure, and the one adopted internationaly, is:

Figure 3.4 PV*,the limiting value of PV as P — 0, is independent of the gas

e Make (PV)* directly proportional to T, with R asthe proportionality constant:
(PVY*=a =RT 3.7
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e Assign the value 273.16 K to the temperature of the triple point of water (denoted by
subscriptt):

(PV); =R x273.16 K (3.8)
Division of Eq. (3.7) by Eq. (3.8) gives:

(PV)*  T/K
(PV)* ~ 273.16K

Vy
T/K =273.16——— 3.9
/ V) )

Equation (3.9) establishesthe Kelvin temperaturescale throughout the temperaturerange for
which valuesdf (PV)* are experimentally accessible.

Thestateof agasat thelimiting condition where P — 0 deservessomediscussion. The
molecules making up agas become more and more widely separated as pressureis decreased,
and the volume of the molecules themselves becomes a smaller and smaller fraction of the
tota volume occupied by the gas. Furthermore, the forces of attraction between molecules
become ever smaller because of the increasing distances between them (Sec. 16.1). In the
limit, as the pressure approaches zero, the molecules are separated by infinite distances. Their
volumes become negligible compared with the total volume of the gas, and the intermol ecular
forces approach zero. At these conditionsall gases are said to be ideal, and the temperature
scaleestablishedby Eq. (3.9) isknown astheideal-gastemperature scale. The proportionality
constant R in Eq. (3.7) is called the universal gas constant. Its numerical vaueis determined
by meansdf Eq. (3.8) from experimental PV T data:

(PV);
273.16K

Since PV T data cannot in fact be taken at zero pressure, data taken at finite pressures are
extrapol atedto the zero-pressurestate. Determined asindicated by Fig. 3.4, the accepted value
of (PV)*is22.7118 m® bar kmol~!, leading to thefollowing valueof R:'

=

_22.7118 m® bar kmol !
B 273.16K

Through the use of conversionfactors, R may be expressed in various units. Commonly used
valuesaregiven by Table A.2 of App. A.

R = 0.083 1447 m® bar kmol~! K~!

Two Forms of the Virial Equation
A useful auxiliary thermodynamic property is defined by the equation:

PV
Z= RT (3.10)

hitp://physics.nist.gov/constants.
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This dimensionless ratio is called the compressibility factor. With this definition and with
a = RT [Eq. (3.7)], Eq. (3.6) becomes:

(Z=1+BP+CP2+DP +... @3.11)

An alternativeexpressionfor Z isalso in common use:?

Z—]_L_B,+£+E+...
TV 2y

(3.12)

Both of theseequationsareknown asvirial expansions, and the parametersB', C', D', etc., and
B,C, D, etc., arecalledvirial coefficients. Parameters B and B are second virid coefficients;
C and C arethird viria coefficients; etc. For a given gas the viria coefficients are functions
of temperatureonly.

The two sets of coefficientsin Egs. (3.11) and (3.12) are related asfollows:

’

B C — B? D —-3BC +2B3
=— C'=—rr D= —
RT (RT)? (RT)

Thederivationof theserelationsrequiresfirst theeliminationof P ontheright of Eq. (3.11).An
expressionfor P comesfrom Eq. (3.12)with Z replacedby PV /RT. Theresultingequationis
apower seriesin 1/V whichiscompared term by termwith Eq. (3.12)to providetheequations
relating the two sets of virial coefficients. They hold exactly only for thetwo virial expansions
asinfiniteseries, but are acceptableapproximationsfor thetruncatedformstreatedin Sec. 3.4.

Many other equations of state have been proposed for gases, but the virial equations
are the only ones having a firm basisin theory. The methods of statistical mechanics allow
derivation of the virial equations and provide physical significance to the virial coefficients.
Thus, for theexpansionin 1/V , theterm B/V ariseson account of interactionsbetween pairs
of molecules(Sec. 16.2);the C/ V2 term, on account of three-body interactions; etc. Sincetwo-
body interactionsare many times more common than three-body interactions, and three-body
interactionsare many times more numerousthan four-body interactions, etc., the contributions
to Z of the successively higher-orderedterms decreaserapidly.

! !

3.3 THE IDEAL GAS

Since the terms B/ V, C/V?2, etc., of the virial expansion [Eq. (3.12)] arise on account of
molecular interactions, the viria coefficientsB, C, etc., would be zeroif no such interactions
existed. The virial expansion would then reduceto:

Z=1 or PV =RT

For areal gas, molecular interactions do exist, and exert an influence on the observed
behaviorof thegas. Asthepressureof areal gasisreducedat constanttemperature,V increases
and thecontributionsof theterms B/V , C/ V2, etc., decrease. For a pressureapproachingzero,
Z approachesunity, not becauseof any changein theviria coefficients, but becauseV becomes

2Proposed by H. Kamerlingh Onnes, " Expression of the Equation of State of Gases and Liquids by Means of
Series," Communicationsfromthe Physical Laboratory of the Universityof Leiden, no. 71, 1901.
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infinite. Thus in the limit as the pressure approaches zero, the equation of state assumesthe
same simpleform asfor the hypothetical caseof B=C = ... =0;1i.e,

Z== or PV = RT

We know from the phase rule that the internal energy of areal gas is a function of
pressure as well as of temperature. This pressure dependency is the result of forces between
the molecules. If such forces did not exist, no energy would be required to alter the average
intermol ecular distance, and therefore no energy would be required to bring about volume and
pressurechangesin agasat constant temperature. We concludethat in the absenceof molecular
interactions, the internal energy of a gas depends on temperature only. These considerations
of the behavior of a hypothetical gasin which no intermolecular forcesexist and of areal gas
in the limit as pressure approaches zero lead to the definition of an ideal gas as one whose
macroscopic behavior is characterized by:

e Theequation of state:
PV =RT (ideal gas) (3.13)

e Aninternal energy that isafunction of temperatureonly:

U=UT) (ideal gas) (3.14)

Implied Property Relations for an Ideal Gas

The definition of heat capacity at constant volume, Eqg. (2.16), leads for an ideal gas to the
conclusionthat Cy is afunction of temperatureonly:

ol dU
Cy (BT).,, T v(T) (3.15)

The defining equation for enthalpy, Eq. (2.11), appliedto an ideal gas, leadsto the conclusion
that H also is afunction of temperatureonly:

H=U+PV=U(T)+RT =H(T) (3.16)
The heat capacity at constant pressure Cp, defined by Eq. (2.20), like Cy, is a function of
temperatureonly:
dH dH

Cp=|—7) =——=Cp(T 3.17

P (BT);, a7 p(T) (3.17)
A useful relation between Cp and Cy for anideal gascomesfrom differentiationof Eqg. (3.16):

dH dU
_ m— I — R = ; =t
Cp T = 4T + Cy+R (3.18)

This equation does not imply that Cp and Cy are themselves constant
for an ideal gas, but only that they vary with temperaturein such a way
that their differenceis equal to R.

For any change of state of an ideal gas Eq. (3.15)may be written:

dU = CydT (3.19a)



68 CHAPTER 3. Volumetric Properties of Pure Fluids

Whence,

AU = /CVdT (3.19b)
By Eq. (3.17), dH = CpdT (3.20a)
Whence, AH = f CpdT (3.20b)

Figure 3.5 Internal energy changes for an ideal gas

Since both theinternal energy and Cy of anideal gasarefunctionsaof temperatureonly,
AU for anideal gasisalwaysgiven by Eq. (3.19b), regardlessof thekind of processcausingthe
change. Thisisdemonstratedin Fig. 3.5, which showsa graph of internal energy asafunction
of molar volume with temperature as parameter. Since U is independent of V, a plot of U
vs. V at constant temperatureis a horizontal line. For different temperatures, U has different
values, with a separate line for each temperature. Two such lines are shown in Fig. 3.5, one
for temperature 77 and one for a higher temperature 7. The dashed line connecting points a
and b representsa constant-volumeprocessfor which the temperatureincreasesfrom 7T; to 7,
and the internal energy changesby AU = U, — U;. This changein internal energy is given
by Eqg. (3.19b) as AU = [ Cy dT. The dashed lines connecting pointsa and ¢ and pointsa
and d represent other processes not occurring at constant volume but which also lead from
aninitial temperature T; to afina temperature 7. The graph shows that the changein U for
these processesis the same as for the constant-volumeprocess, and it is thereforegiven by the
sameequation, namely, AU = [ Cy dT. However, AU isnot equal to Q for these processes,
because Q depends not only on T; and 7> but aso on the path of the process. An entirely
analogousdiscussion appliesto theenthalpy H of anideal gas. (SeeSec. 2.16.)

Theideal gasisamodel fluid described by simpleproperty relations, whicharefrequently
good approximationswhen applied to actual gases. In process calculations, gases at pressures
up to afew bars may often be consideredideal, and simpleequationsthen apply.

Equations for Process Calculations: Ideal Gases

For anideal gasin any mechanically reversibleclosed-system process, Eq. (2.6), writtenfor a
unit mass or amole, may be combined with Eq. (3.19a):

dQ+dW = CydT
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Thework for amechanically reversibleclosed-system processisgiven by Eq. (1.2), also written
for onemole or a unit mass:

dW =—-PdV
Whence, dQ=CydT + PdV
Thetwo preceding equations for an ideal gas undergoingareversible processin aclosed

system take several formsthrough elimination of oneof thevariables P,V ,or T by Eq. (3.13).
Thus, with P = RT/V they become:

dv
av
aw = _RTV (3.22)

Alternatively,letV = RT/P:

R RT
dQ =CydT + P( =dT — ~=dP
Q v + (P p? )

With Eqg. (3.18) this reduces to:

dP
dQ = Cpdl — RT— (3.23)
Also, dW = —RdT + RT%P (3.24)

Finaly,let T = PV/R:
1% P
dQ =Cy (EdP + Edv) +PdV

Again with Eg. (3.18) this becomes:

Cy Cp
dQ =—VdP+ —PdV 3.
(0] R + R (3.25)
Thework issimply: dW =—-PdV

These equationsmay be applied to various processes, as describedin what follows. The
genera restrictionsimplicitin their derivation are:

e Theequationsare vaid for ideal gases.
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e Theprocessis mechanically reversible.
e Thesystemisclosed.

Isothermal Process
By Egs. (3.19b) and (3.20b), AU =AH =0

By Egs. (3.21) and (3.23), Q=RTI nE R @
Vi 1

By Egs. (3.22) and (3.24), V: P
y Eds. (3:22) and (3.24) W=—RT1nVZ=RTInF2
1 1

Notethat Q = —W, aresult that also followsfrom Eq. (2.3). Therefore,

1% P
Q=-W=RTIN=2=—RTIn=2  (constT) (3.26)
2 2

Isobaric Process
By Egs. (3.19b) and (3.20b),

AU= fCVdT and AH:/C,ndT
and by Egs. (3.23) and (3.24),

Q=SdeT and W=—-R(T,—T)
Notethat Q = AH, aresultaso given by Eq. (2.13). Therefore,

O0=AH= / CpdT  (const P) (3.27)

Isochoric (Constant-V) Process
Equations(3.19b) and (3.20b) again apply:

AU=/CvdT and AH Zprd'I'
By Egs. (3.21) and (1.3),

Q=j CydT ad W=0
Notethat Q = AU, aresult also given by Eq. (2.10). Therefore,

Q=AU = / CydT  (const V) (3.28)
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Adiabatic Process: Constant Heat Capacities

An adiabatic processis one for which there is no heat transfer between the system and its
surroundings; that is, d Q = 0. Each of Egs. (3.21), (3.23), and (3.25) may therefore be set
equal to zero. Integration with Cy and Cp constant then yields simple relations among the
variablesT, P, and V. For example, EQ. (3.21) becomes:

dTr R dV

T Cy V
Integration with Cy constant then gives:

/2 v e
7=(%)

Similarly, Egs. (3.23) and (3.25) lead to:

Tg (Pz)ﬁ,a"(:'p P2 ( Vl )C{'g"Cv
—=|— and —= ) —
T Py Py %)

These equations may also be expressed as:

TVvv~! = constant -

T PU=v)¥ = constant v

PVY = constant (.2%)

Whereby definition,’ y = ? (3.30)
V

Equations (3.29) apply to an ideal gas with constant heat capacities
undergoing a mechanically reversible adiabatic process.

The work of an adiabatic process may be obtained from the relation:
dW =dU = Cy dT
If Cy isconstant, integration gives:
W =AU =Cy AT (3.31)

Alternativeformsof Eg. (3.31) areobtainedwhen Cy iseliminatedin favor of the heat-capacity
ratio y:

_&_Cv—FR_ |+R_

Y=o T oy Cy

*If Cy and Cp are constant, y is necessarily constant. For an ideal gas, the assumption of constant y isequivalent
to the assumption that the heat capacities themselves are constant. Thisis the only way that theratio Cp/Cy = y and
thedifference Cp — Cy = R can both be constant. Except for the monotonic gases, both Cp and Cy actualy increase
with temperature, but theratio y is less sensitive to temperature than the heat capacities themselves.
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Whence, Cy = ——
y—1
R AT

Therefore W =Cy AT = I
y —

Since RT; = PV, and RT, = P,V,, thisexpression may be written:

RT;, — RT; PV, — PV,
w= D 1_fav 1Vi (3.32)
y —1 y —1
Equations (3.31) and (3.32) are genera for an adiabatic process, whether reversible or
not. However, V; is usualy not known, and iseliminatedfrom Eq. (3.32) by Eq. (3.29¢), vdid
only for mechanically reversible processes. This|eadsto the expression:

r=1/y P\ vy
i DA | By _1|=R0 | (2 ] (3.33)
y —1 P y—1 P

The same result is obtained when the relation between P and V given by Eq. (3.29¢) is used
for integration of theexpresson W = — [ P dV .

Equations (3.29), (3.31), (3.32), and (3.33) are for ideal gases with constant heat
capacities. Equations (3.29) and (3.33) al so require the process to be mechanically reversible;
processes which are adiabatic but not mechanicaly reversible are not described by these
equations.

When applied to real gases, Egs. (3.29) through (3.33) often yield satisfactory approx-
imations, provided the deviations from idedlity are relatively small. For monatomic gases,
y = 1.67; approximate values of y are 1.4 for diatomic gases and 1.3 for simple polyatomic
gases such asCO;,, SO, NH3, and CHa.

Polytropic Process

Since polytropic means "'turning many weys' polytropic process suggests a model of some
versatility. With 6 aconstant, it is defined as a process for which

PV = congant (3.34a)
For an ideal gas equations analogous to Egs. (3.29a) and (3.29b) arereadily derived:
TV ! = congtant (3.34b)
(1-8)/8 _
and TP = constant (3.34¢)

When the relation between P and V isgiven by Eq. (3.34a), evaluationdf [ PdV yields
Eqg. (3.33) with y replaced by 6:

@-1)/
W= aR_Tll [(%) o 1:| (3.35)




3.3. Theldeal Gas 73

Moreover, for constant heat capacities, the first law solved for Q yields:

__G-pRL_[ (RO
C=G-1n0r -1 [(E) - (429

The several processes aready described correspond to the four paths shown on Fig. 3.6 for
specificvalues of 6:

e Isobaric process: By Eq. (3.34a), 6 = 0.

e Isothermal process: By Eq. (3.34b), 6 = 1.

e Adiabaticprocess. 6 = y.

e Isochoric process: By Eq. (3.34a), dV/dP = V/P8§; for constant V, 6 = +o0.

Figure 3.6 Paths of polytropic processes characterized by specific values of 6

Irreversible Process

The equationsdevel oped in this section have been derived for mechanicallyreversible, closed-
system processesfor ideal gases. However, thoseequationswhich relate changesin statefunc-
tionsonly are vaid for ideal gases regardlessof the process. They apply equally to reversible
and irreversibleprocessesin both closed and open systems, because changesin statefunctions
depend only on theinitial and final states of the system. On the other hand, an equationfor Q
or W is specific to the processconsidered in its derivation.

The work of an irreversible processis calculated by a two-step procedure. First, W is
determined for a mechanically reversible process that accomplishesthe same change of state
astheactual irreversibleprocess. Second, thisresultis multipliedor divided by an efficiency to
givetheactual work. If the process produceswork, the absolutevauefor thereversibleprocess
istoo large and must be multiplied by an efficiency. If the processrequireswork, the valuefor
thereversible processis too small and must be divided by an efficiency.

Applicationsof the conceptsand equationsdevel oped in thissection areillustratedin the
examplesthat follow. In particular, the work of irreversibleprocessesis treatedin the last part
of Ex. 3.3.
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3.4 APPLICATION OF THE VIRIAL EQUATIONS

The two forms of the virial expansion given by Egs. (3.11) and (3.12) are infinite series. For
engineering purposestheir useis practical only whereconvergenceis very rapid, that is, where
two or threeterms sufficefor reasonably close approximationsto the values of the series. This
isrealized for gasesand vapors at low to moderate pressures.

Figure3.10showsacompressibility-factorgraphfor methane. Vauesof thecompressibil -
ity factor Z (ascalculatedfrom PV T datafor methaneby thedefiningequationZ = PV /RT)
areplotted vs. pressurefor variousconstant temperatures. The resul tingi sothermsshow graphi-
cally what thevirial expansionin Pisintendedtorepresentanalytically.All isothermsoriginate
at thevalue Z = 1for P = 0. In addition the isotherms are nearly straight lines at low pres-
sures. Thus the tangent to anisothermat P = 0 isagood approximationof theisothermfrom
P — 0 to somefinite pressure. Differentiationaf Eq. (3.11) for a given temperaturegives:

9z
(_ =B +2C'P+3D'P*+...
apP ),
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Figure 3.10 Compressibility-factorgraph for methane

: Z ;
from which, e =B
P T,P=0
Thus the equation of thetangent lineis:
Z=1+BP

aresult also given by truncating Eg. (3.11) to two terms. A more common form of thisequation
resultsfrom the substitution (Sec. 3.2), B' = B/RT:

PV BP
Z=—=14— 37
RT * RT @30
Equation (3.12) may also be truncated to two termsfor application at low pressures:
PV B
=i = T v (3.38)

However, Eg. (3.37) is more convenientin applicationand is at least as accurateas Eq. (3.38).
Thus when the virial equation is truncated to two terms, Eq. (3.37) is preferred. This equation
satisfactorily representsthe PV T behavior of many vapors at subcritical temperaturesup to a
pressure of about 5 bar. At higher temperaturesit is appropriatefor gases over an increasing
pressurerangeasthetemperatureincreases. The second viria coefficient B issubstancedepen-
dent and afunction of temperature. Experimental values are available for anumber of gases.*
Moreover, estimation of second virial coefficientsis possible where no data are available, as
discussedin Sec. 3.6.

1. H. Dymond and E. B. Smith, The Virial Coefficients of Pure Gases and Mixtures, pp. 1-10, Clarendon Press,
Oxford, 1980.
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For pressures abovethe range of applicability of Eq. (3.37) but below the critical pres-
sure, the virial equation truncated to three terms often provides excellent results. In this case
Eqg. (3.12), theexpansionin 1/V , isfar superior to Eq. (3.11). Thus when the virial equation
istruncated to three terms, the appropriateformis:

=t =

z el 3.39
Vv V2 )

This equation can be solved directly for pressure, but is cubic in volume. Solution for V is
easily done by an iterative scheme with a calculator.

shot100 F 3 4000
= 9 B Q N
5 - —2000 B
£ g
T -100 |- - ~4000 &
S 23]
E=s) o
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Toe () 100 200 300 400

7K

Figure 311 Density-series virial coefficients B and C for nitrogen

Vauesof C, likethose of B, depend on the gas and on temperature. However, much less
isknown about third virial coefficientsthan about second virial coefficients, though datafor a
number of gasesarefound in theliterature. Since virial coefficients beyond the third arerarely
known and sincethe virial expansion with morethan three termsbecomesunwieldy, its useis
uncommon.

Figure 3.11 illustrates the effect of temperature on the virial coefficients B and C for
nitrogen; although numerical values are different for other gases, the trends are similar. The
curve of Fig. 3.11 suggeststhat B increases monotonically with T ; however, at temperatures
much higher than shown B reaches a maximum and then dowly decreases. The temperature
dependenceof C ismoredifficult to establish experimentally, but its main featuresareclear: C
is negative a low temperatures, passesthrough a maximum at a temperature near the critical,
and thereafter decreasesdowly withincreasing T .

A classof equationsinspired by Eqg. (3.12), known as extended virial equations, isillus-
trated by the Benedict/'Webb/Rubin equation:3

SM. Benedict, G. B. Webb, L. C. Rubin, J. Chem. Phys., vol. 8, pp. 334—345, 1940; vol. 10, pp. 747—-758,1942.
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RT  ByRT — Ag— Co/T? bRT —a

= — + }r‘
\Y V2 VA ¥% + ﬁl 1 + VZ exp 3
where Ag, By, Co, @, b, Cc,a,and y are all constant for a given fluid. This equation and its

modifications, despite their complexity, are used in the petroleum and natural-gasindustries
for light hydrocarbonsand afew other commonly encountered gases.
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SRS

3.5 CUBIC EQUATIONS OF STATE

If an equation of stateis to represent the PV T behavior of both liquids and vapors, it must
encompass a wide range of temperaturesand pressures. Yet it must not be so complex as to
present excessivenumerical or analytical difficultiesin application. Polynomial equationsthat
arecubicin molar volumeoffer acompromisebetween generality and simplicity that issuitable
to many purposes. Cubic equations arein fact the simplest equations capable of representing
both liquid and vapor behavior.

The van der Waals Equation of State
Thefirst practical cubic equation of state was proposed by J. D. van der Waals® in 1873:

RT a

o e 40
V—-b V2 (349)

Here, a and b are positiveconstants; when they are zero, theideal-gasequationis recovered.

Given valuesof a and b for a particular fluid, one can calculate P asafunction of V for
various values of T. Figure 3.12 is a schematic PV diagram showing three such isotherms.
Superimposed is the "'dome" representing states of saturated liquid and saturated vapor. For
theisotherm T} > 7., pressureis a monotonically decreasing function with increasing molar
volume. Thecritical isotherm (labeled 7.) containsthe horizontal inflection at C characteristic
of thecritical point. For theisotherm T, < T, the pressuredecreasesrapidly in the subcooled-
liquid region with increasing V; after crossing the saturated-liquid line, it goes through a
minimum, rises to a maximum, and then decreases, crossing the saturated-vapor line and
continuing downward into the superheated-vapor region.

Experimental isotherms do not exhibit this smooth transition from saturated liquid to
saturated vapor; rather, they contain a horizontal segment within the two-phase region where
saturated liquid and saturated vapor coexist in varying proportions at the saturation or vapor

5Johannes Diderik van der Waals(1837-1923), Dutch physicist who won the 1910 Nobel Prize for physics.
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pressure. This behavior, shown by the dashed linein Fig. 3.12, is nonanal ytic, and we accept
asinevitablethe unrealistic behavior of equationsof statein the two-phaseregion.

ol v

vsat(lig) Vsat(vap)
v

Figure 3.12 Isotherms as given by a cubic equation of state

Actually, the PV behavior predictedin this region by proper cubic equations of stateis
not wholly fictitious. When the pressureis decreased on a saturated liquid devoid of vapor-
nucleationsitesin acarefully controlled experiment, vaporization doesnot occur, and theliquid
phasepersistsal oneto pressureswel | below itsvapor pressure. Similarly, raisingthe pressureon
a saturated vapor in a suitable experiment does not cause condensation, and the vapor persists
aoneto pressureswell abovethe vapor pressure. These nonequilibriumor metastabl e states of
superheated|iquid and subcool ed vapor are approximatedby thoseportionsof the PV isotherm
which lie in the two-phaseregion adjacent to the saturated-liquid and saturated-vapor states.

Cubic equationsof state have three volume roots, of which two may be complex. Phys-
ically meaningful values of V are aways real, positive, and greater than constant b. For an
isotherm at T > 7, referenceto Fig. 3.12 showsthat solutionfor V at any positive value of
P yields only one such root. For the critical isotherm (T = T,), thisis also true, except at
thecritical pressure, where there are threeroots, al equal to V... For isothermsat T < T, the
equation may exhibit one or three real roots, depending on the pressure. Although these roots
arereal and positive, they are not physically stable statesfor the portion of an isotherm lying
between saturated liquid and saturated vapor (under the' dome™). Only therootsfor P = P,
namely V**(liq) and V**(vap), are stablestates, connected by the horizontal portionof thetrue
isotherm. For other pressures (as indicated by the horizontal lines shown on Fig. 3.12 above
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and below P %), thesmallestroot isaliquid or "'liquid-like" volume, and thelargestis a vapor
or "vapor-like'" volume. The third root, lying between the other values, is of no significance.

A Generic Cubic Equation of State

Since the introduction of the van der Waals equation, scores of cubic equationsaof state have
been proposed. All are special cases of the equation:

_RT B v —n)
T V—=b (V=b)VZ2+kV +21)

Here b, 8, k, 2, and n are parameterswhich in general depend on temperatureand (for mix-
tures) composition. Although this equation appearsto possess great flexibility, it has inherent
limitations because of its cubic form.” It reducesto the van der Waals equation when = b,
f=a,andx = A =0.

An important class of cubic equations results from the preceding equation with the
assignments:

P

n=~hb 0= a(T) kK =(e+0o)k L= eob?

It isthustransformedinto an expressiongeneral enough to serveas ageneric cubic equation d
state, which reducesto all othersof interest here upon assignment of appropriate parameters:

_ RT a(T)
“V-b (VvTenvtan)

P (3.41)

For agivenequation, e and a are purenumbers, thesamefor all substances, whereas parameters
a(T) and b are substance dependent. The temperature dependence of a(T') is specific to each
equation of state. For the van der Waalsequation, a(T') = a is asubstance-dependent constant,
ande =0 =0.

Determination of Equation-of-State Parameters

The constantsin an equation of state for a particular substance may be evaluated by a fit to
available P VT data. For cubicequationsof state, however, suitableestimatesare usually found
from valuesfor thecritical constants 7, and P.. Sincethecritical isothermexhibitsahorizontal
inflection at the critical point, we may impose the mathematical conditions:

P\ 32P) _§
v T:cr“ av? T;cr—

where the subscript "cr'* denotesthe critical point. Differentiationof Eqg. (3.41) yields expres-
sionsfor both derivatives, which may be equatedto zerofor P = P, T =T,,and V = V..
The equation of state may itself be written for the critical conditions. These three equations
containfive constants: P., V., T., a(T), and b. Of the severa waysto treat these equations, the

M. M. Abbott, AICRE J.,vol. 19, pp. 596601, 1973; Adv. in Chem. Series 182, K. C. Chao and R. L. Robinson,
Jr., eds., pp. 47-70, Am. Chem. Soc., Washington, D.C., 1979.
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most suitableis eliminationof V, to yield expressions relating a(T:) and b to P, and ;.. The
reason isthat P. and T, are usually more accurately known than V.

An equivaent, but more straightforward, procedure is illustratedfor the van der Waas
eguation. SinceV = V, for each of the three roots at the critical point,

(V-V} =0
or Vi-3V.V243Viv—V2=0 (A)
Equation (3.40) expanded in polynomia form becomes:
3 RT.\ ., a ab
I — Vi —vVv-—=0 B
Y (“ 2 A -

Recall that for a particular substance parameter a in the van der Wadls equationis a constant,
independent of temperature.
Term-by-term comparison of Egs. (A) and (B) provides three equations:

RT,

3V.=b ¢
+ P (€)

. a
Vi= — D
We=% (D)

ab
Ve — E
e =P (E)

Solving Eqg. (D) for a, combining the result with Eq. (E), and solving for b gives:
3 1
a=3P.V; b= 3 Ve

Substitutionfor b in Eq. (C) alows solution for V., which can then be eliminated from the
eguationsfor a and b:

3 RT, 27 R*T?
i ag= —
8 P 64 P,

RT,
Pe

Ve

oo —

Although these equations may not yield the best possible results, they provide reasonable
valueswhich can almost aways be determined, becausecritical temperaturesand pressures(in
contrast to extensive PV T data) are often known, or can bereliably estimated.
Substitution for V. in the equation for the critical compressibility factor reduces it
immediately to:
7 = PV,
T RT.

-3
8

A singlevaluefor Z,., applicablealike to al substances, results whenever the parametersof a
two-parameter equation of state are found by imposition of the critical constraints. Different
valuesarefoundfor different equationsof state, asindicatedin Table 3.1, p. 93. Unfortunately,
the values so obtained do not in general agree with those cal culated from experimental values
of 7., P., and V,; each chemical speciesin fact hasits own value of Z.. Moreover, the values
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given in Table B.l of App. B for various substances are aimost all smaller than any of the
equation values given in Table 3.1.

An analogous procedure may be applied to the generic cubic, Eq. (3.41), yielding
expressions for parameters a(T,) and b. For the former,

BT
P,

Thisresult may be extended to temperatures other than the critical by introduction of adimen-
sionless function «(7;) that becomes unity at the critical temperature. Thus

a(l,y=w

a(T,)R*T?

a(T) =V P

(3.42)

Function «(7,) is an empirical expression, specific to a particular equation of state. Parameter
bisgiven by:

RT,

[

h=Q (3.43)

In these equations €2 and W are pure numbers, independent of substance and determined for a
particular equation of state from the values assigned to ¢ and a.

The modern development of cubic equationsof state wasinitiated in 1949 by publication
of the Redlich/Kwong (RK) equation:'

RT a(T)

P— w
V—b V(V+b)

(3.44)

where, in Eq. (3.42), «(T,) = T;l,e_

Theorem of Corresponding States; Acentric Factor

Experimental observation shows that compressibility factors Z for different fluidsexhibit sim-
ilar behavior when correlated asafunction of reduced temperature 7, and reducedpressure P, ;
by definition,

ol

P

S

7; and I r

Thisisthe basis for the two-parameter theorem of corresponding states:

All fluids, when compared at the same reduced temperature and re-
duced pressure, have approximately the same compressibility factor,
and all deviate from ideal-gas behavior to about the same degree.

Although this theorem is very nearly exact for the simple fluids (argon, krypton, and
Xenon) systematic deviations are observed for more complex fluids. Appreciableimprovement

80tto Redlich and J. N. S. Kwong, Chem. Rev. , vol. 44, pp. 233-244, 1949.
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results from introduction of athird corresponding-states parameter, characteristic of molecular
structure; the most popular such parameter isthe acentric factor w, introduced by K. S. Pitzer
and coworkers.’

1Ty
1.0 1.2 1.4 186 1.8 2.0
(0] T T T T T
3 =
g." Si 2.3
ope =~ —2.
B., i 4 (Ar, Kr, Xe)
1
2t |
1
I
+ Slope = —3.2
;l = % =143~ (,0ctane)

Figure 3.13 Approximate temperature dependence of the reduced vapor pressure

The acentric factor for a pure chemical species is defined with reference to its vapor
pressure. Since the logarithm of the vapor pressure of a pure fluid is approximately linear in
the reciprocal of absolute temperature,

dlog P*
d(1/T,)

where P** is the reduced vapor pressure, 7, is the reduced temperature, and Sis the slope of
aplot of log P vs. 1/T,. Notethat "'log" denotes alogarithm to the base 10.

If the two-parameter theorem of corresponding states were generally valid, the slope
Swould be the same for al pure fluids. This is observed not to be true; each fluid has its
own characteristic value of S which could in principle serve as a third corresponding-states
parameter. However, Pitzer noted that all vapor-pressure data for the simple fluids (Ar, Kr,
Xe) lie on the same line when plotted as log P vs. 1/T, and that the line passes through
logP = —1.0a 7, = 0.7. This is illustrated in Fig. 3.13. Data for other fluids define
other lines whose | ocations can befixed in relation to theline for the simple fluids (SF) by the
difference: satcons cat

log P*(SF) — log P,

The acentric factor is defined asthis difference evaluated at 7, = 0.7:

= —-1.0-— |Ug(1");.5al)3-'r =07 (345)

“Fully described in K. S. Pitzer, Thermodynamics, 3d ed., App. 3, McGraw-Hill, New Y ork, 1995
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Thereforew can bedeterminedfor any fluidfrom 7., P., and asingle vapor-pressuremeasure-
ment made at 7, = 0.7. Vaues of w and the critical constants 7., P., and V, for a number of
fluidsarelistedin App. B.

Thedefinitionof w makesitsvaluezerofor argon, krypton, and xenon, and experimental
data yield compressibility factors for all three fluids that are correlated by the same curves
when Z is represented as afunction of 7, and P,. Thisis the basic premise of the following
three-parameter theorem of corresponding states:

All fluids having the same value of », when compared at the same T,

and P,, have about the same value of Z, and all deviatefrom ideal-gas

behavior to about the same degree.

Vapor & Vapor-Like Roots of the Generic Cubic Equation of State

Although one may solve explicitly for its three roots, the generic cubic equation of state,
Eq. (3.41), isin practicefar more commonly solved by iterative procedures.!” Convergence
problems are most likely avoided when the equation is rearranged to a form suited to the
solutionfor aparticular root. For thelargest roat, i.e., avapor or vapor-likevolume, Eq. (3.41)
is multiplied through by (V — b)/RT. It can then be written:

RT a(T) V- b
P 0T Th eV fob)

V= (3.46)
Solution for V may be by trial, iteration, or with the solve routine of a software package. An
initial estimatefor V istheideal-gasvalue RT / P. For iteration, this valueis substituted on the
right sideof Eq. (3.46).Theresulting value of V on theleft is then returned to the right side,
and the processcontinues until the changein V is suitably small.

An equation for Z equivalent to Eq. (3.46) is obtained through the substitution V. =
ZRT/P. In addition, the definition of two dimensionless quantities leads to simplification.

Thus
' bP
=__ 347
B RT (3.47)
a(T)
= 3.48
7= bRT Q)
These substitutionsinto Eq. (3.46)yield:
Z-p
Z=1 - 3.49
P ez ¥ op (3.49)
Equations (3.47)and (3.48)in combination with Egs. (3.42)and (3.43) yield:
P
=Q 3.50
B T (3.50)

1%Such procedures are built into computer software packages for technical calculations. With these packages one
can solve routinely for V in equations such as (3.41) with little thought asto how it is done.
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_ YaT)
1= g,
Iterative solution of Eq. (3.49) starts with the value Z = 1 substituted on the right side.

Thecalculated valueof Z isreturned totheright side and the process continues to convergence.
Thefinal value of Z yields the volumeroot throughV = ZRT/P.

(3.51)

Liquid & Liquid-Like Roots of the Generic Cubic Equation of State
Equation (3.46)may be solved for the V in the numerator of thefinal fraction to give:

V=b+(V+eb}(V +o0b) [R;T—-l- bP »4% (3.52)
a(T)
This equation with a starting value of V = b on the right side converges upon iteration to a
liquid or liquid-like root.
An eguation for Z equivalent to Eq. (3.52)is obtained when Eq. (3.49)is solved for the
Z in the numerator of thefinal fraction:

(3.53)

z =ﬁ+(z+eﬁ)(z+o,3)(l+ﬁ—"z)

qp
For iteration a starting value of Z = 8 is substituted on the right side. Once Z is known, the
volumerootisV = ZRT/P.

Equations of state which express Z asafunction of 7, and P, are said to be generalized,
because of their general applicability to all gases and liquids. Any equation of state can be put
into this form to provide a generalized correlation for the properties of fluids. This allows the
estimation of property valuesfrom very limited information. Equations of state, such asthevan
der Waalsand Redlich/Kwong equations, which express Z asfunctions of 7, and P, only, yield
two-parameter corresponding states correlations. The Soave/Redlich/Kwong (SRK) equation®
and the Peng/Robinson (PR) equation,*? in which the acentric factor enters through function
«(T,;w) as an additional parameter, yield three-parameter corresponding-states correlations.
The numerical assignments for parameters ¢, a, 2, and W, both for these equations and for
the van der Waalsand Redlich/Kwong equations, are given in Table 3.1. Expressions are also
givenfor «(7,; w)for the SRK and PR equations.

1G. Soave, Chem. Eng. i ., vol. 27, pp. 1197-1203, 1972.
12D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., vol. 15, pp. 59-64, 1976.
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For comparison, valuesof V? and V* calculatedfor the conditionsof Ex. 3.8 by all four
of the cubic equations of state considered here are summarized asfollows:

V¥/em®mol ™! Viem*mol !

Exp. |vdW RK SRK PR | Exp. | vdW RK SRK PR

2482 [ 2667 2555 2520 2486 |115.0 | 191.0 133.3 1278 112.6

The Soave/Redlich/Kwong and the Peng/Robinson equations were devel oped specifically for
vapor/liquid equilibrium calculations(Sec. 14.2).

Roots of equations of state are most easily found with a software package such as
Mathcad® or Maple®, in which iteration is an integral part of the equation-solving routine.
Starting values or bounds may be required, and must be appropriateto the particular root of
interest. A Mathcad® program for solving Ex. 3.8 isgivenin App. D.2.

3.6 GENERALIZED CORRELATIONS FOR GASES

Generalized correlations find widespread use. Most popular are correlations of the kind de-
veloped by Pitzer and coworkers for the compressibility factor Z and for the second virial
coefficient B."3

Pitzer Correlations for the Compressibility Factor
Thecorrelationfor Z takestheform:

Z=27+wZ' (3.54)

whereZ® and Z'! arefunctionsof both 7, and P,. Whenw = 0, asisthecasefor thesimplefluids,
the second term disappears, and Z° becomesidentical with Z. Thus a generalized correlation
for Z as afunction of 7, and P, based on datafor just argon, krypton, and xenon provides
the relationship Zz° = F%T,, P,). By itself, this represents a two-parameter corresponding-
states correlationfor Z. Since the second term of Eq. (3.54) isareatively small correctionto
this correlation, its omission does not introduce large errors, and a correlationfor Z° may be

138ee Pitzer,op. cit.
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used alonefor quick but lessaccurateestimatesof Z than are obtained from a three-parameter
correlation.

Equation (3.54) isasimplelinear relation between Z and « for given valuesof T, and P,.
Experimental datafor Z for nonsmplefluidsplotted vs. w at constant 7, and P, doindeedyield
approximately straight lines, and their slopes provide valuesfor Z! from whichthegeneraized
function Z! = F!(T,, P,) can be constructed.

Of the Pitzer-type correlations available, the one developed by Lee and Kesler!® has
found greatest favor. Although its development is based on a modified form of the Bene-
dict/Webb/Rubin equation of state, it takes the form of tableswhich present valuesof Z° and
Z! asfunctionsof 7, and Pr. Thesearegivenin App. E as TablesE.1 through E.4. Useof these
tables often requiresinterpolation, which is treated at the beginning of App. F. The nature of
the correlationisindicated by Fig. 3.14, aplot of Z° vs. P, for six isotherms.

Compressed liquids
(1< 1.0)
0.2 05 1.0 AR T

Figure 3.14 The Lee/Kesler correlation for Z° = F%(T,, P,)

TheLee/Kesler correlationprovidesreliableresultsfor gaseswhich are nonpolar or only
dightly polar; for these, errors of no more than 2 or 3 percent are indicated. When applied to
highly polar gases or to gases that associate, larger errors can be expected.

The quantum gases (e.g., hydrogen, helium, and neon) do not conform to the same
corresponding-states behavior asdo normal fluids. Their treatment by the usua correlationsis

1B |. Leeand M. G. Kesler, AICKE J., vol. 21, pp. 510-527,1975
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sometimesaccommodated by useof temperature-dependenteffectivecritical parameters.'> For
hydrogen, the quantum gas most commonly found in chemical processing, the recommended
equationsare:

43.6
I./K= HT (for Hy) (3.55)
2.016T
20.5
PC/bar = H-—442— (for Hz) (356)
2016T
) 515
V,/cm® mol~! = —gg; (forH) (3.57)
~ 2016T

where T is absolute temperature in kelvins. Use of these effective critical parameters for
hydrogen requiresthe further specificationthat > = 0.

Pitzer Correlations for the Second Virial Coefficient

The tabular nature of the generalized compressibility-factorcorrelationis a disadvantage, but
the complexity of the functions Z° and Z' precludestheir accurate representation by simple
equations. However, we can give approximate analytical expression to these functionsfor a
limited range of pressures. The basis for this is Eq. (3.37), the simplest form of the virial

equation: , BP .
Z=1l4+—-—=14—2)= ’
tTrr-T (RTC) T (:58)
Thus, Pitzer and coworkers proposed a second correlation, which yields vauesfor B P./RT,:

BP.
i B + B! (3.59)

Together, these two equations become:

P, P,
Z=1+B"2 Bt
+ T +w T

Comparison of thisequation with Eq. (3.54) providesthefollowingidentifications:

P
Z°=14B"L (3.60)
T,
and Zl = Bli
T,

137 M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Mol ecular Thermodynamicsof Fluid-Phase Equilibria,
3d ed., pp. 172-173, Prentice Hall PTR, Upper Saddle River, NJ, 1999.
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Second virial coefficients are functions of temperature only, and similarly B® and B! are
functionsof reducedtemperatureonly. They arewell represented by thefoll owing equations:'®

0.422
0 _
B =0.083 - Zr (3.61)
0.172
L
B! =0.139 - 7 (3.62)
El= = l 4.0
-
— [] L
i 24
’
I
\' ':
T
.\ \'\1.8
\ :
1 [}
I
]
\;\“
T R
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; P

Figure 3.15 Comparison of correlations for Z°. The virial-coefficient correlation is
representedby the straightlines; the Lee/Kesler correlation, by the points. In the region
above the dashed line the two correlations differ by less than 2%

The simplest form of the virial equation has validity only at low to moderate pressures
where Z islinear in pressure. The generalized virial-coefficientcorrelationis therefore useful
only where Z° and Z' are at least approximately linear functions of reduced pressure. Fig-
ure 3.15 comparesthelinear relationof Z° to P, asgiven by Egs. (3.60) and (3.61) with values
of Z° fromtheLee/Kesler compressibility-factorcorrelation, TablesE.1 and E.3. The two cor-
relations differ by less than 2% in the region above the dashed line of the figure. For reduced
temperaturesgreater than 7, ~ 3, there appearsto be no limitation on the pressure. For lower
values of T, the allowable pressure range decreases with decreasing temperature. A point is
reached, however, at 7, ~ 0.7 where the pressurerangeis limited by the saturation pressure.'’

16 These correlations first appeared in 1975in the third edition of this book, attributed as a personal communication
to M. M. Abbott, who developed them.

17 Although the Lee/Kesler tables, App. E, list valuesfor superheated vapor and subcooled liquid, they do not provide
values at saturation conditions.
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Thisisindicated by theleft-most segment of the dashed line. The minor contributionsof Z! to
the correlationsare here neglected. In view of the uncertainty associated with any generalized
correlation, deviationsof no more than 2% in Z° are not significant.

The relative simplicity of the generalized virial-coefficient correlation does much to
recommendit. Moreover, temperaturesand pressuresof many chemical-processingoperations
liewithintheregion whereit does not deviateby asignificantamount from thecompressibility-
factor correlation. Likethe parent correlation, it is most accuratefor nonpolar speciesand | east
accuratefor highly polar and associating molecules.

The question often arises as to when the ideal -gasequation may be used as areasonable
approximationto reality. Figure 3.16 can serve as aguide.

10
b
i
: /:\\
l z9=1.02 \
1 7
Vi
7
/.
/.
/\ z%=0.98
P. 0.1 -
Fa
7
/
/
0.01
0.001
0 1 2 3 4
T,

Figure 3.16 Region where Z° lies between 0.98 and 1.02, and the ideal-gas equation
is a reasonable approximation
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i

3.7 GENERALIZED CORRELATIONSFOR LIQUIDS

Although the molar volumes of liquids can be cal culated by means of generalized cubic equa-
tions of state, the results are often not of high accuracy. However, the Lee/Kesler correlation
includesdatafor subcooledliquids, and Fig. 3.14 illustratescurvesfor both liquids and gases.
Vaues for both phases are provided in Tables E.I through E.4. Recall, however, that this
correlationis most suitablefor nonpolar and dlightly polar fluids.

In addition, generalized equations are available for the estimation of molar volumes of
saturated liquids. The simplest equation, proposed by Rackett,'® is an example:

vt =y, Z0-T0 (3.63)

The only data required arethe critical constants, givenin App. B. Resultsare usualy accurate
to 1 or 2%.

Lydersen, Greenkorn, and Hougen'? developed a two-parameter corresponding-states
correlationfor estimation of liquid volumes. It providesacorrelation of reduced density o, as
afunction of reduced temperatureand pressure. By definition,

p_ Ve

e = 3.64
o =V (3.64)

%H. G. Rackett, J Chem. Eng. Data, vol. 15, pp. 514-517, 1970; see also C. F. Spencer and S. B. Adler, ibid.,
vol. 23, pp. 82-89, 1978, for areview of available equations.

19A. L. Lydersen, R. A. Greenkorn, and O. A. Hougen, " Generalized Thermodynamic Properties of Pure Fluids,”
Lhi v. Wisconsin, Eng. Expt. Sta. Rept. 4, 1955.
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where p. isthe density at thecritical point. The generalized correlationis shown by Fig. 3.17.
This figure may be used directly with Eq. (3.64) for determination of liquid volumes if the
value of the critical volume is known. A better procedure is to make use of a single known
liquid volume (state 1) by the identity,

v=n (3.65)

r2

Saiua‘ied Liguid -

Figure 3.17 Generalized density correlation for liquids

where V; = required volume
Vi = known volume
Pr., Pr, = reduced densitiesread from Fig. 3.17

Thismethod gives good results and requires only experimental data that are usually available.
Figure 3.17 makes clear the increasing effects of both temperature and pressure on liquid
density asthecritical point is approached.

Correlationsfor the molar densitiesasfunctionsof temperatureare given for many pure
liquids by Daubert and coworkers. 2

20T, E. Daubert, R. P. Danner, H. M. Sibul, and C. C. Stebbins, Physical and Thermodynamic Propertiesof Pure
Chemicals: Data Compilation, Taylor & Francis, Bristol, PA, extant 1995.
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PROBLEMS

3.1. Expressthe volumeexpansivity and theisothermal compressibility asfunctionsof den-
sity o anditspartial derivatives. For water at 323.15K (50°C) and 1bar,k = 44.18Xx 106
bar~!. To what pressure must water be compressed at 323.15 K (50°C) to change its
density by 1%? Assumethat k isindependent of P.
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32

33.

34.

3.5.

36.

37.

38.

Generaly, volume expansivity 8 and isothermal compressibility x dependon T and P.

Provethat:
( 31 )T ( I )

The Tait equationfor liquidsis written for an isotherm as:

AP
Wi Pl P
“( B+P)

where V is molar or specific volume, V; isthe hypothetical molar or specific volume at
zeropressure, and A and B are positiveconstants. Find an expressionfor theisothermal
compressi bility consistent with this equation.

For liquid water theisothermal compressibility is given by:
C
T Ve
wherec and b arefunctionsof temperatureonly. If 1 kg of water is compressedisother-

mally and reversibly from 1 to 500 bar at 333.15 K (60°C), how much work isrequired?
At 333.15 K (60°C), b = 2700 bar and ¢ = 0.125 cm® g~ .

Calculatethe reversiblework done in compressing 0.0283 m® of mercury at a constant
temperatureof 273.15 K(O°C) from 1 atm to 3000 atm. Theisothermal compressibility
of mercury at 273.15 K(0°C) is

k=39x10°-01x107°P
where Pisin amand k is in atm~!.

Five kilograms of liquid carbon tetrachloride undergo a mechanically reversible, iso-
baric change of state at 1 bar during which the temperature changes from 273.15 K
(0°C) t0 293.15K (20°C). Determine AV', W, Q, AH', and AU’. The propertiesfor
liquid carbon tetrachlorideat 1 bar and 273.15 K (0°C) may be assumed independent
of temperature: f = 1.2 x 10> K~!, Cp = 0.84kT kg K~!, and p = 1590 kg m~3.

A substancefor which k isaconstant undergoes an isothermal, mechanically reversible
processfrom initial state (P, V1) to final state (P2, V), where V ismolar volume.

(@) Starting with the definition of k, show that the path of the processis described by:
V = A(T)exp(—« P)

(b) Determine an exact expression which gives the isothermal work done on 1 mol of
this constant-K substance.

Onemoleof anideal gaswithCp = (7/2)R and Cy = (5/2)R expandsfrom P; = 8 bar
and T, = 600 K to P, = 1 bar by each of thefollowing paths:
(a) Constant volume; (b) Constant temperature; (c) Adiabatically.

Assuming mechanical reversibility, calculate W, Q, AU, and AH for each process.
Sketch each path on asingle PV diagram.
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39.

3.10.

311

312

313

3.14.

Anideal gasinitially at 600 K and 10 bar undergoesafour-stepmechanicaly reversible
cyclein aclosedsystem. In step 12, pressuredecreasesisothermallyto 3 bar; in step 23,
pressuredecreases at constant volumeto 2 bar; in step 34, volumedecreasesat constant
pressure; and in step 41, the gasreturns adiabatically to itsinitial state.

(a) Sketchthecycleona PV diagram.

(b) Determine (whereunknown) both T and P for states1, 2, 3, and 4.

(c) Caculate Q, W, AU, and A H for each step of thecycle.

Data: Cp = (7/2)R and Cy = (5/2)R.

An idea gas, Cp = (5/2)R and Cy = (3/2)R, is changed from P = 1 bar and
Vi=12 mto P, = 12barand V! = 1 m? by the following mechanically reversible
processes:.

(a) Isothermal compression.

(b) Adiabatic compression followed by cooling at constant pressure.

(c) Adiabatic compression followed by cooling at constant volume.

(d) Hesating at constant volumefollowed by cooling at constant pressure.

(e) Cooling at constant pressurefollowed by heating at constant volume.
Calculate Q, W, AU?, and AH' for each of theseprocesses, and sketchthe paths of all
processeson asingle PV diagram.

The environmental lapse rate dT /dz characterizes the local variation of temperature
with elevation in the earth's atmosphere. Atmospheric pressure varies with elevation
according to the hydrostatic formula,

dP

T |

e Pg
where M is molar mass, p is molar density, and g isthelocal acceleration of gravity.
Asssume that the atmosphere is an ideal gas, with T related to P by the polytropic
formula, Eqg. (3.34c). Devel op an expression for the environmental |apseratein relation
toM, g, R, and 6.

Anevacuatedtankisfilled with gasfrom aconstant-pressurdine. Developan expression
relating thetemperatureof the gasin thetank to thetemperature T' of thegasintheline.
Assumethe gasisideal with constant heat capacities, and ignore heat transfer between
the gas and the tank. Mass and energy balancesfor this problem are treated in Ex. 2.12.

Show how Egs. (3.35) and (3.36) reduce to the appropriate expressions for the four
particular values of 6 listed following Eqg. (3.36).

A tank of 0.1-m® volume contains air a 298.15 K (25°C) and 101.33 kPa. The tank
is connected to a compressed-air line which suppliesair at the constant conditions of
318.15K (45°C) and 1500kPa. A vavein thelineiscracked sothat air flowsdowly into
the tank until the pressureequalstheline pressure. If the process occursdowly enough
that the temperaturein thetank remainsat 298.15 K (25°C), how much heat islost from
thetank? Assume air to be anideal gasfor which Cp = (7/2)R and Cy = (5/2)R.
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3.15.

3.16.

3.17.

318.

Gas at constant T and P is contained in a supply line connected through a valveto a
closed tank containing the same gas at alower pressure. The valveis opened to alow
flow of gasinto thetank, and then is shut again.

(a) Developagenera equationrelatingn; and n,, the moles(or mass) of gasin thetank
at the beginning and end of the process, to the properties U/; and U,, the internal
energy of the gas in the tank at the beginning and end of the process, and H’, the
enthalpy of thegasin the supply line, and to Q, the heat transferredto the material
in the tank during the process.

(b) Reducethe general equation to its simplest form for the special case of anideal gas
with constant heat capacities.

(c) Further reducethe equation of (b)for thecaseaf n; = 0.

(d) Further reduce the equation of (c)for the casein which, in addition, Q = 0.

(e) Treating nitrogen as an ideal gas for which Cp = (7/2)R, apply the appropriate
equation to the case in which a steady supply of nitrogenat 298.15 K (25°C)and 3
bar flowsinto an evacuated tank of 4-m? volume, and cal cul atethe molesof nitrogen
that flow into the tank to equalize the pressuresfor two cases:

1. Assumethat no heat flows from the gasto the tank or through the tank walls.

2. The tank weighs 400 kg, is perfectly insulated, has an initial temperature of
298.15K (25°C), has a specific heat of 0.46 kJ kg~! K1, and is heated by the
gas so as dways to be at the temperatureof the gasin the tank.

Devel opequati onswhich may besolvedto givethefinal temperatureof thegasremaining
in atank after the tank has been bled from an initial pressure P; to afina pressure P;.
Known quantities are initial temperature, tank volume, heat capacity of the gas, total
heat capacity of the containing tank, P;, and P,. Assume the tank to be always at the
temperatureof the gas remainingin the tank, and the tank to be perfectly insul ated.

A rigid, nonconducting tank with a volume of 4 m? is divided into two unequal parts

by athin membrane. One side of the membrane, representing 1/3 of the tank, contains

nitrogen gas at 6 bar and 373.15 K (100°C), and the other side, representing2/3 of the

tank, is evacuated. The membranerupturesand the gasfills the tank.

(@) What is the final temperatureof the gas? How much work is done? Is the process
reversible?

(b) Describe areversible process by which the gas can be returned to its initial state.
How much work is done?

Assume nitrogenisanideal gasfor whichCp = (7/2)R and Cy = (5/2)R.

Anideal gas, initially at 303.15 K (30°C) and 100 kPa, undergoes thefollowing cyclic

processesin aclosed system:

(a) In mechanicallyreversibleprocesses, it isfirst compressed adiabatically to 500 kPa,
then cooled at a constant pressure of 500 kPa to 303.15 K (30°C), and finally
expanded isothermally to its original state.

(b) The cycle traverses exactly the same changes of state, but each step isirreversible
with an efficiency of 80% comparedwith thecorrespondingmechanicallyreversible
process.

Calculate Q, W, AU, and AH for each step of the process and for the cycle. Teke
Cp=(1/2)Rand Cy =(5/2)R.
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3.19.

3.20.

321

3.22.

3.23.

3.24.

3.25.

One cubic meter of an ideal gasat 600 K and 1000 kPa expandsto fivetimesitsinitial

volume asfollows:

(a) By amechanically reversible,isothermal process.

(b) By amechanically reversible, adiabatic process.

(c) By an adiabatic, irreversible process in which expansion is against a restraining
pressureof 100 kPa.

For each case calculate the final temperature, pressure, and the work done by the gas.

Cp=21Tmol"! K1

One mole of air, initialy at 423.15 K (150°C) and 8 bar, undergoes the following
mechanically reversiblechanges. It expandsisothermally to a pressure such that when
itiscooled at constant volumeto 323.15 K (50°C)itsfinal pressureis 3 bar. Assuming
arrisanideal gasfor whichCp = (7/2)Rand Cy = (5/2)R, calculateW, Q, AU, and
AH.

An ideal gas flows through a horizontal tube at steady state. No heat is added and no
shaft work is done. The cross-sectional area of the tube changes with length, and this
causesthevel ocity to change. Derive an equationrel ating thetemperatureto thevel ocity
of thegas. If nitrogen at 423.15 K (150° C)flows past one section of thetubeat avelocity
of 25 ms~!, what isits temperatureat another section where its velocity is50 ms—!1?
LetCp = (7/2)R.

One mole of anideal gas, initially at 303.15 K (30°C)and 1 bar, is changed to 403.15
K (130°C)and 10 bar by three different mechanically reversibleprocesses:

e Thegasisfirst heated at constant volumeuntil itstemperatureis403.15 K (130°C);
then it is compressedisothermally until its pressureis 10 bar.

¢ Thegasisfirstheated at constant pressureuntil itstemperatureis403.15 K (130°C);
then it is compressed isothermally to 10 bar.

e The gasis first compressed isothermally to 10 bar; then it is heated at constant
pressureto 403.15 K (130°C).

Calculate Q, W, AU, and AH in each case. Take Cp = (7/2)R and Cy = (5/2)R.
Alternatively, take Cp = (5/2)R and Cy = (3/2)R.

Onekmol of anideal gas, initially at 303.15 K (30°C)and 1 bar, undergoesthefollowing
mechanically reversiblechanges. It iscompressedisothermally to a point such that when
itisheated at constant volumeto 393.15 K (120°C)itsfinal pressureis 12 bar. Calculate
Q, W, AU, and AH for the process. Teke Cp = (7/2)R and Cy = (5/2)R.

A process consists of two steps: (1) One kmol of airat T = 800 K and P = 4 bar is
cooled at constant volumeto T = 350 K. (2)Theair is then heated at constant pressure
until its temperature reaches 800 K. If this two-step processis replaced by a single
isothermal expansion of the air from 800 K and 4 bar to some fina pressure P, what is
thevalueaof P that makesthe work of the two processesthe same? Assume mechanical
reversibility and treat air as an ideal gas with Cp = (7/2)R and Cy = (5/2)R.

A schemefor finding theinternal volume V;, of agas cylinder consistsof thefollowing
steps. The cylinder is filled with a gas to alow pressure P;, and connected through a
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3.26.

3.27.

3.28.

3.29.

3.30.

small line and valveto an evacuated referencetank of known volume V. Thevaveis
opened, and gas flows through the lineinto the referencetank. After the system returns
toitsinitial temperature, asensitivepressuretransducer providesavauefor thepressure
change A Pin thecylinder. Determinethe cylinder volume V}, from thefollowing data:

o V! =1256cm’.
e AP/P = —0.0639.

A closed, nonconducting, horizontal cylinder i sfitted with anonconducting, frictionless,
floating piston which divides the cylinder into Sections A and B. The two sections
contain equal massesof air, initially at the same conditions, 7; = 300K and P, = 1
am. An electrical heating element in Section A is activated, and the air temperatures
dowly increase: T4 in Section A becauseof heat transfer, and 75 in Section B because
of adiabatic compression by the slowly moving piston. Treat air as an ideal gas with
Cp = %R, and let n, be the number of moles of air in Section A. For the process as
described, evaluate one of thefollowing sets of quantities:

(a) T4, Tg, and Q/VLA, if P(final) = 1.25 atm.

(b) Ts, O/na, and P(final), if T4 = 425K.

(©) T4, Q/ny, and P(final), if Tp = 325K.

(d) T4, Tz, and P(final), if @/ns =3 kJ mol ™!,

One mole of anideal gaswith constant heat capacities undergoesan arbitrary mechan-
ically reversibleprocess. Show that:

AU = —I-—A(PV)
y—1

Derive an equationfor the work of mechanically reversible, isothermal compression of
1 mol of agasfrom an initial pressure P; to afina pressure P, when the equation of
stateisthevirial expansion[Eq. (3.11)] truncated to:

Z=1+BP
How does the result compare with the corresponding equation for an ideal gas?

A certain gasis described by the equation of state:

0
PV:RT+(b—-ﬁ)P

Here, bisaconstant and 8 isafunctionof T only. For this gas, determine expressions
for the isothermal compressibility k and the thermal pressure coefficient (3P/aT)y.
These expressionsshould containonly T, P, 8, d6/d T, and constants.

For methyl chloride at 373.15 K (100°C) the second and third virial coefficients are:
B = —242.5 cm® mol™! C = 25200 cm® mol 2

Calculate the work of mechanically reversible, isothermal compression of 1 mol of
methyl chloride from 1 bar to 55 bar at 373.15 K (100°C). Base calculations on the
followingforms of the virial equation:
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33L

3.32

3.33.

3.34.

B C

(a) Z=l+?+~‘}—£

(b) z=1tBPt P

where ;
, B .
“zr ™ =&y

Why don't both equations give exactly the sameresult?

Any equation of statevalidfor gasesin the zero-pessurelimit impliesafull set of viria
coefficients. Show that the second and third virial coefficientsimplied by the generic
cubicequation of state, Eq. (3.41), are;

a(T) .5 e+ o)ba(l)

B=b-— RT C=b"+ RT
Specializetheresultfor B to theRedlich/Kwong equation of state, expressitin reduced
form, and compare it numerically with the generalized correlation for B for simple
fluids, Eg. (3.61). Discuss what you find.

CalculateZ and V for ethyleneat 298.15 K (25°C) and 12 bar by thefollowing equations:

(a) The truncated viria equation [EQ. (3.39)] with the following experimenta values
of virial coefficients:

B = —140 cm® mol™! C = 7200 cm® mol 2

(b) The truncated virial equation [EQ. (3.37)], with a value of B from the generalized
Pitzer correlation[Eq. (3.59)].

(¢) TheRedlich/Kwong equation.

(d) The Soave/Redlich/Kwong equation.

(e) ThePeng/Robinson equation.

CalculateZ and V for ethaneat 323.15K (50°C) and 15 bar by thefollowing equations:

(a) Thetruncated viria equation [EQ. (3.39)] with the following experimenta values
of virid coefficients:

B = —156.7 cm® mol ! C = 9650 cm® mol~2

(b) Thetruncated viria equation [EQ. (3.37)], with avalue of B from the generalized
Pitzer correlation[Eg. (3.59)].

(c) TheRedlich/Kwong eguation.

(d) The Soave/Redlich/Kwong equation.

(e) ThePeng/Robinson equation.

CalculateZ and V for sulfur hexafluorideat 348.15K (75°C)and 15 bar by thefollowing
equations:

(a) The truncated virial equation [Eg. (3.39)] with the following experimental values
of viria coefficients:

B = —194 cm® mol ™! C = 15 300 cm® mol 2
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3.35.

3.36.

3.37.

3.38.

(b) Thetruncated virial equation [Eq. (3.37)], with a valueof B from the generalized

Pitzer correlation [EqQ. (3.59)].
(¢) TheRedlich/Kwong equation.
(d) The Soave/Redlich/Kwong equation.
(e) ThePeng/Robinson equation.

For sulfur hexafluoride, 7, = 318.7 K, 2, = 37.6 bar, V, = 198 cm® mol~!, and
o = 0.286.

DetermineZ and V for steam at 523.15K (250°C) and 1800 kPa by thefollowing:

(a) Thetruncated virial equation [Eq. (3.39)] with the following experimentd values
of virial coefficients:

B = —152.5 cm® mol™! C = —5800 cm® mol 2

(b) The truncated virial equation [Eq. (3.37)1, with a value of B from the generalized
Pitzer correlation [Eq. (3.59)].
(c) Thesteam tables (App. F).

With respect to the virial expansions, Egs. (3.11) and (3.12), show that:

a9z 9Z
(), = =)
ap T,P=0 90 /1. p=0

wherep =1/ V.

Equation (3.12) when truncated tofour termsaccurately represents the volumetric data
for methane gas a 273.15 K (0°C) with:

B = —53.4 ¢cm® mol™! C = 2620 cm® mol—2 D = 5000 cm® mol 3

() Usethesedatato prepareaplot of Z vs. P for methaneat 273.15K (0°C) from 0 to
200 bar.
(b) Towhat pressures do Egs. (3.37) and (3.38) provide good approximations?

Calculatethe molar volumedf saturated liquid and the molar volume of saturated vapor
by theRedlich/Kwong equationfor onedf thefollowingand compareresultswith values
found by suitablegeneralized correlations.

(a) Propaneat 313.15 K(40°C) where P = 13.71 bar.
(o) Propaneat 323.15 K(50°C) where P$* = 17.16 bar.
(c) Propaneat 333.15 K(60°C) where P5* = 21.22bar.
(d) Propaneat 343.15 K(70°C) where P5* = 25.94 bar.
(e) n-Butaneat 373.15 K(100°C) where P*** = 15.41 bar.
(H n-Butaneat 383.15K(110°C) where P*** = 18.66bar.
(9 n-Butaneat 393.15 K(120°C) where P5* = 22.38bar.
(n) n-Butaneat 403.15 K(130°C) where P = 26.59 bar.
(i) lsobutane at 363.15 K(90°C) where P# = 16.54 bar.
(/) Isobutaneat 373.15 K(100°C) where P%* = 20.03bar.
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3.30.

3.40.

341.

342.

343.

344.

345.

3.46.

347.

(k) Isobutaneat 383.15 K(110°C) where P*" = 24.01 bar.
() Isobutaneat 393.15 K(120°C) where P = 28.53bar.

(m) Chlorineat 333.15K(60°C) where P = 18.21 bar.

(n) Chlorineat 343.15K(70°C) where P% = 22.49 bar.

(0) Chlorineat 353.15 K(80°C) where P = 27.43bar.

(p) Chlorineat 363.15 K(90°C) where P** = 33.08 bar.

(9) Sulfur dioxideat 353.15 K(80°C) where P**' = 18.66 bar.
(r) Sulfur dioxide at 363.15 K(90°C) where P** = 23.31 bar.
(s) Sulfur dioxide at 373.15 K(100°C) where P5* = 28.74 bar.
(t) Sulfur dioxide at 383.15K(110°C) where P** = 35.01 bar.

Use the Soave/Redlich/Kwong equation to calculate the molar volumes of saturated
liquid and saturated vapor for the substanceand conditionsgiven by one of the partsof
Pb. 3.38 and compare results with valuesfound by suitable generalized correlations.

Usethe Peng/Robinson equation to calcul ate the molar volumes of saturated liquid and
saturated vapor for the substance and conditions given by one of the parts of Pb. 3.38
and compare results with values found by suitable generalized correlations.

Estimate the following:

(a) Thevolume occupied by 18 kg of ethyleneat 328.15 K (55°C) and 35 bar.

(b) The massof ethylene contained in a0.25-me cylinder at 323.15 K (50°C) and 115
bar.

Thevapor-phasemol ar volumeof aparticul arcompoundisreportedas 23000 cm® mol !
at 300 K and 1 bar. No other data are available. Without assuming ideal-gas behavior,
determine a reasonabl e estimate of the molar volume of the vapor at 300 K and 5 bar.

To agood approximation, what i sthe molar volumeof ethanol vapor at 753.15K (480°C)
and 6000 kPa? How does this result compare with theideal -gas value?

A 0.35-m® vessd is used to storeliquid propane at its vapor pressure. Safety consider-
ations dictate that at atemperatureof 320 K theliquid must occupy no more than 80%
of thetotal volume of the vessel. For these conditions, determinethe massof vapor and
themassof liquidin the vessel. At 320 K the vapor pressureof propaneis 16.0 bar.

A 30-md tank contains 14 m?® of liquid n-butanein equilibriumwithits vapor at 298.15 K
(25°C). Estimatethe mass of n-butanevapor in thetank. The vapor pressureof n-butane
at the given temperatureis 2.43 bar.

Estimate:

(@) Themassof ethane containedin a0.15-m? vessdl at 333.15 K (60°C) and 14 bar.

(b) Thetemperatureat which40kg of ethanestoredina0.15-m? vessdl exertsapressure
20 bar.

To what pressure does one fill a0.15-m? vessal at 298.15 K (25°C) in order to store
40 kg of ethyleneinit?
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3.48.

3.49.

3.50.

3.5L

3.52.

3.53.

3.54.
3.55.

3.56.

3.57.

3.58.

3.50.

If 15 kg of H,O in a0.4-m3 container is heated to 673.15 K (400°C), what pressureis
developed?

A 0.35-m? vessdl holds ethane vapor at 298.15 K (25°C) and 2200 kPa. If it is heated
t0 493.15K (220°C), what pressureis devel oped?

What isthe pressurein a0.5-m® vessal when it is charged with 10 kg of carbon dioxide
at 303.15K (30°C)?

A rigid vessdl, filled to one-half its volume with liquid nitrogen at its normal boiling
point, is alowed to warm to 298.15K (25°C). What pressureis devel oped?The molar
volume of liquid nitrogen at its normal boiling point is 34.7 cm® mol~1.

The specific volume of isobutaneliquid at 300 K and 4 bar is 1.824 cm® g~!. Estimate
the specificvolume at 415 K and 75 bar.

The density of liquid n-pentaneis 0.630g cm— at 291.15 K (18°C) and 1 bar. Estimate
itsdensity at 413.15 K (140°C) and 120 bar.

Estimatethe density of liquid ethanol at 453.15 K (180°C) and 200 bar.

Estimate the volume change of vaporization for ammoniaat 293.15 K (20°C). At this
temperaturethe vapor pressureof ammoniais 857 kPa.

PVT datamay betaken by thefollowing procedure. A massm of asubstanceof molar
mass M isintroducedinto athermostated vessel of known total volume V*. The system
isalowed to equilibrate, and the temperature T and pressure P are measured.

(a) Approximately what percentageerrors are alowablein the measured variables(m,
M, VI, T and P)if the maximum allowableerror in the cal culated compressibility
factor Z is £1%?

(b) Approximately what percentage errors are allowablein the measured variablesif
the maximumallowableerror in cal culated values of the second virial coefficient B
is+1%? Assumethat Z ~ 0.9 and that valuesof B are calculated by Eq. (3.32).

For a gas described by the Redlich/Kwong equation and for a temperaturegreater than
T., develop expressionsfor the two limiting slopes,

i a7z i BZ)
P apP . Phs aP ),

Notethat inthelimitas P — 0,V — oo, and that in thelimitas P — o0,V — b.

If 3.965mS of methane gas at 288.75 K(15.6°C) and 1 atm is equivalent to 3.785 x
103 md of gasolineasfuel for an automobileengine, what would be volumeof thetank
required to hold methane at 207 bar and 288.75K(15.6°C) in an amount equivalent to
37.85 x 10~ m® of gasoline?

Determineagood estimatefor the compressibility factor Z of saturated hydrogen vapor
at 25 K and 3.213 bar. For comparison, an experimental valueis Z = 0.7757.
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3.60. TheBoyle temperatureisthe temperaturefor which:

0Z
lim (—) =0
P~0\3P J;

(a) Show that the second virial coefficient B is zero at the Boyle temperature.
(b) Use the generalized correlation for B, Eq. (3.59), to estimate the reduced Boyle
temperaturefor simplefluids.

3.61. Natural gas (assumepure methane) isdeliveredto acity viapipelineat avolumetricrate
of 4 normal Mm?® per day. Average delivery conditionsare 283.15 K (10°C) and 20.7
bar. Determine:

(a) The volumetricdelivery ratein actual m® per day.

(b) The molar ddlivery ratein kmol per hour.

(c) Thegasvelocity at delivery conditionsin ms=!.

The pipe is 600 mm heavy duty steel with an inside diameter of 575 mm. Normal
conditionsare 273.15 K (0°C) and 1 atm.

3.62. Some corresponding-statescorrelationsusethecritical compressibility factor Z,., rather
than the acentric factor w, as athird parameter. The two typesof correlation (one based
on T, P., and Z,., the other on 7., P., and w) would be equivalent were there a one-
to-one correspondence between Z. and w. The data of App. B alow a test of this
correspondence. Prepareaplot of Z. vs.w toseehow well Z,. correlateswithw. Develop
alinear correlation (Z. = a + bw)for nonpolar substances.



