
Chapter 3 

Volumetric Properties of 
Pure Fluids 

Thermodynamic properties, such as internal energy and enthalpy, from which one calculates 
the heat and work requirements of industrial processes, are often evaluated from volumetric 
data. Moreover, pressure/volume/temperature (P V T )  relations are themselves important for 
such purposes as the metering of fluids and the sizing of vessels and pipelines. We therefore 
first describe the general nature of the P V T  behavior of pure fluids. There follows a detailed 
treatment of the ideal gas, the simplest realistic model of fluid behavior. Equations of state 
are then considered, as they provide the foundation for quantitative description of real fluids. 
Finally, generalized correlations are presented that allow prediction of the P V  T  behavior of 
fluids for which experimental data are lacking. 

3.1 PVT BEHAVIOR OF PURE SUBSTANCES 

Measurements of the vapor pressure of a pure substance, both as a solid and as a liquid, lead 
to pressure-vs.-temperature curves such as shown by lines 1-2 and 2-C in Fig. 3.1. The third 
line (2-3) gives the solidlliquid equilibrium relationship. The three lines display conditions of 
P and T  at which two phases may coexist, and are boundaries for the single-phase regions. 
Line 1-2, the sublimation cuwe, separates the solid and gas regions; line 2-3, thefusion cuwe, 
separates the solid and liquid regions; line 2-C, the vaporization cuwe, separates the liquid 
and gas regions. All three lines meet at the triple point, where the three phases coexist in 
equilibrium. According to the phase rule, Eq. (2.7), the triple point is invariant ( F  = 0). If the 
system exists along any of the two-phase lines of Fig. 3.1, it is univariant ( F  = I), whereas in 
the single-phase regions it is divariant ( F  = 2). 

The vaporization curve 2-C terminates at point C ,  the critical point. The coordinates of 
this point are the critical pressure PC and the critical temperature Tc, the highest pressure and 
highest temperature at which a pure chemical species can exist in vaporlliquid equilibrium. 

Homogeneous fluids are usually classified as liquids or gases. However, the distinction 
cannot always be sharply drawn, because the two phases become indistinguishable at the critical 
point. Paths such as the one shown in Fig. 3.1 from A to B lead from the liquid region to the 
gas region without crossing a phase boundary. The transition from liquid to gas is gradual. On 
the other hand, paths which cross phase boundary 2-C include a vaporization step, where an 
abrupt change from liquid to gas occurs. 
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The area existing at temperatures and pressures greater than T, and P, is marked off by 
dashed lines in Fig. 3.1, which do not represent phase boundaries, but rather are limits fixed 
by the meanings accorded the words liquid and gas. A phase is generally considered a liquid 
if vaporization results from pressure reduction at constant temperature. A phase is considered 
a gas if condensation results from temperature reduction at constant pressure. Since neither 
process occurs in the area beyond the dashed lines, it is called thejuid region. 

The gas region is sometimes divided into two parts, as indicated by the dotted vertical 
line of Fig. 3.1. A gas to the left of this line, which can be condensed either by compression at 
constant temperature or by cooling at constant pressure, is called a vapor. The region everywhere 
to the right of this line, where T > T,, including the fluid region, is termed supercritical. 

Figure 3.1 PT diagram for a pure substance 

PV Diagram 

Figure 3.1 does not provide any information about volume; it merely displays the phase bound- 
aries on a PT diagram. On a P V  diagram [Fig. 3.2(a)] these boundaries become areas, i.e., 
regions where two phases, solid/liquid, solidlvapor, and liquidvapor, coexist in equilibrium. 
For a given T and P ,  the relative amounts of the phases determine the molar (or specific) 
volume. The triple point of Fig. 3.1 here becomes a horizontal line, where the three phases 
coexist at a single temperature and pressure. 

Figure 3.2(b) shows the liquid, liquidvapor, and vapor regions of the P V diagram, with 
four isotherms superimposed. Isotherms on Fig. 3.1 are vertical lines, and at temperatures 
greater than T, do not cross a phase boundary. On Fig. 3.2(b) the isotherm labeled T > T, is 
therefore smooth. 

The lines labeled Tl and T2 are for subcritical temperatures, and consist of three segments. 
The horizontal segment of each isotherm represents all possible mixtures of liquid and vapor in 
equilibrium, ranging from 100% liquid at the left end to 100% vapor at the right end. The locus 
of these end points is the dome-shaped curve labeled BC D, the left half of which (from B to C) 
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Figure 3.2 P V  diagrams for a pure substance. (a) Showing solid, liquid, and gas 
regions. (b) Showing liquid, liquidlvapor, and vapor regions with isotherms 

represents single-phase (saturated) liquids at their vaporization (boiling) temperatures, and the 
right half (from C to D), single-phase (saturated) vapors at their condensation temperatures. 
The horizontal portion of an isotherm lies at a particular saturation or vapor pressure, given by 
the point on Fig. 3.1 where the isotherm crosses the vaporization curve. 

The two-phase liquidlvapor region lies under dome BC D, whereas the subcooled-liquid 
and superheated-vapor regions lie to the left and right, respectively. Subcooled liquid exists 
at temperatures below, and superheated vapor, at temperatures above the boiling point for the 
given pressure. Isotherms in the subcooled-liquid region are very steep, because liquid volumes 
change little with large changes in pressure. 

The horizontal segments of the isotherms in the two-phase region become progressively 
shorter at higher temperatures, being ultimately reduced to a point at C. Thus, the critical 
isotherm, labeled T,, exhibits a horizontal inflection at the critical point C at the top of the 
dome. Here the liquid and vapor phases cannot be distinguished from each other, because their 
properties are the same. 

Critical Behavior 
Insight into the nature of the critical point is gained from a description of the changes that 
occur when a pure substance is heated in a sealed upright tube of constant volume. The dotted 
vertical lines of Fig. 3.2(b) indicate such processes. They may also be traced on the P T diagram 
of Fig. 3.3, where the solid line is the vaporization curve (Fig. 3.1), and the dashed lines are 
constant-volume paths in the single-phase regions. If the tube is filled with either liquid or gas, 
the heating process produces changes which lie along the dashed lines, e.g., by the change 
from E to F (subcooled-liquid) and by the change from G to H (superheated-vapor). The 
corresponding vertical lines on Fig. 3.2(b) lie to the left and to the right of BCD. 
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Figure 3.3 PT diagram for a pure fluid showing the vapor-pressure curve and 
constant-volume lines in the single-phase regions 

If the tube is only partially filled with liquid (the remainder being vapor in equilib- 
rium with the liquid), heating at first causes changes described by the vapor-pressure curve 
(solid line) of Fig. 3.3. For the process indicated by line J Q  on Fig. 3.2(b), the meniscus is 
initially near the top of the tube (point J),  and the liquid expands upon heating until it com- 
pletely fills the tube (point Q). On Fig. 3.3 the process traces a path from (J,  K) to Q, and 
with further heating departs from the vapor-pressure curve along the line of constant molar 
volume v,. 

The process indicated by line K N  on Fig. 3.2(b) starts with a lower meniscus level in 
the tube (point K); heating causes liquid to vaporize, and the meniscus recedes to the bottom 
of the tube (point N). On Fig. 3.3 the process traces a path from (J ,  K) to N. With further 
heating the path continues along the line of constant molar volume V .  

For a unique filling of the tube, with a particular intermediate meniscus level, the heating 
process follows a vertical line on Fig. 3.2(b) that passes through the critical point C. Physically, 
heating does not produce much change in the level of the meniscus. As the critical point is 
approached, the meniscus becomes indistinct, then hazy, and finally disappears. On Fig. 3.3 
the path first follows the vapor-pressure curve, proceeding from point ( J ,  K)  to the critical 
point C, where it enters the single-phase fluid region, and follows V,, the line of constant molar 
volume equal to the critical volume of the fluid. 

Single-Phase Region 

For the regions of the diagram where a single phase exists, Fig. 3.2(b) implies a relation 
connecting P, V, and T which may be expressed by the functional equation: 
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This means that an equation of state exists relating pressure, molar or specific volume, and 
temperature for any pure homogeneous fluid in equilibrium states. The simplest equation of 
state is for an ideal gas, P V = RT, a relation which has approximate validity for the low- 
pressure gas region of Fig. 3.2(b), and which is discussed in detail in Sec. 3.3. 

An equation of state may be solved for any one of the three quantities P ,  V, or T as 
a function of the other two. For example, if V is considered a function of T and P ,  then 
V = V(T, P),  and 

The partial derivatives in this equation have definite physical meanings, and are related to two 
properties, commonly tabulated for liquids, and defined as follows: 

Volume expansivity: 

1 av . Isothermal compressibility: K - - - (-) v a P  , (3.3) 

Combination of Eqs. (3.1) through (3.3) provides the equation: 

The isotherms for the liquid phase on the left side of Fig. 3.2(b) are very steep and closely 
spaced. Thus both (aV/aT)p and (aV/aP), and hence both @ and K are small. This char- 
acteristic behavior of liquids (outside the critical region) suggests an idealization, commonly 
employed in fluid mechanics and known as the incompressiblejluid, for which both ,8 and K 

are zero. No real fluid is truly incompressible, but the idealization is useful, because it often 
provides a sufficiently realistic model of liquid behavior for practical purposes. There is no 
P V T  equation of state for an incompressible fluid, because V is independent of T and P .  

For liquids is almost always positive (liquid water between 273.15 K (0°C) and 
277.15 K (4°C) is an exception), and K is necessarily positive. At conditions not close to the crit- 
ical point, @ and K are weak functions of temperature and pressure. Thus for small changes in T 
and P little error is introduced if they are assumed constant. Integration of Eq. (3.4) then yields: 

This is a less restrictive approximation than the assumption of an incompressible fluid. 
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3.2 VlRlAL EQUATIONS OF STATE 

Figure 3.2 indicates the complexity of the P V T  behavior of a pure substance and suggests the 
difficulty of its description by an equation. However, for the gas region alone relatively simple 
equations often suffice. Along a vapor-phase isotherm such as Tl in Fig. 3.2(b), V  decreases 
as P increases. The PV product for a gas or vapor should therefore be much more nearly 
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constant than either of its members, and hence more easily represented. For example, PV 
along an isotherm may be expressed as a function of P by a power series: 

If b = aB', c = aC', etc., then, 

PV = a ( l  + B'P + C ' P ~  + D ' P ~  + . - .) (3.6) 

where a ,  B', C', etc., are constants for a given temperature and a given chemical species. 
In principle, the right side of Eq. (3.6) is an infinite series. However, in practice a finite 

number of terms is used. In fact, P VT data show that at low pressures truncation after two 
terms usually provides satisfactory results. 

Ideal-Gas Temperatures; Universal Gas Constant 

Parameters B', C', etc., in Eq. (3.6) are species dependent and functions of temperature, but 
parameter a is the same function of temperature for all species. This is shown experimentally by 
measurements of volumetric data as a function of P for various gases at constant temperature. 
Figure 3.4, for example, is a plot of P V vs. P for four gases at the triple-point temperature 
of water. The limiting value of PV as P + 0 is the same for all of the gases. In this limit 
(denoted by the asterisk), Eq. (3.6) becomes: 

It is this property of gases that makes them valuable in thermometry, because the limiting 
values are used to establish a temperature scale which is independent of the gas used as thermo- 
metric fluid. The functional relationship f (T) and a quantitative scale must be established; both 
steps are completely arbitrary. The simplest procedure, and the one adopted internationally, is: 

Figure 3.4 PV*, the limiting value of PV as P -+ 0, is independent of the gas 

Make ( P  V)* directly proportional to T, with R as the proportionality constant: 

(PV)* = a  = RT (3.7) 
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Assign the value 273.16 K to the temperature of the triple point of water (denoted by 
subscript t ) :  

Division of Eq. (3.7) by Eq. (3.8) gives: 

(PV)* - TIK - 
( P  V): 273.16 K 

Equation (3.9) establishes the Kelvin temperature scale throughout the temperature range for 
which values of ( P  V)* are experimentally accessible. 

The state of a gas at the limiting condition where P -+ 0 deserves some discussion. The 
molecules making up a gas become more and more widely separated as pressure is decreased, 
and the volume of the molecules themselves becomes a smaller and smaller fraction of the 
total volume occupied by the gas. Furthermore, the forces of attraction between molecules 
become ever smaller because of the increasing distances between them (Sec. 16.1). In the 
limit, as the pressure approaches zero, the molecules are separated by infinite distances. Their 
volumes become negligible compared with the total volume of the gas, and the intermolecular 
forces approach zero. At these conditions all gases are said to be ideal, and the temperature 
scale established by Eq. (3.9) is known as the ideal-gas temperature scale. The proportionality 
constant R in Eq. (3.7) is called the universal gas constant. Its numerical value is determined 
by means of Eq. (3.8) from experimental P VT data: 

Since PVT data cannot in fact be taken at zero pressure, data taken at finite pressures are 
extrapolated to the zero-pressure state. Determined as indicated by Fig. 3.4, the accepted value 
of (PV): is 22.7118 m3 bar kmol-', leading to the following value of R:' 

22.7 1 18 m3 bar kmol-' 
R = = 0.083 1447 m3 bar kmol-' K-' 

273.16 K 

Through the use of conversion factors, R may be expressed in various units. Commonly used 
values are given by Table A.2 of App. A. 

Two Forms of the Virial Equation 
A useful auxiliary thermodynamic property is deJined by the equation: 
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This dimensionless ratio is called the compressibility factor. With this definition and with 
a = RT [Eq. (3.7)], Eq. (3.6) becomes: 

An alternative expression for Z is also in common use:2 

B C D  
z = l + - + - + - - i . + . . .  v v2 v 

Both of these equations are known as virial expansions, and the parameters B', C', D', etc., and 
B,  C ,  D, etc., are called virial coeficients. Parameters B' and B are second virial coefficients; 
C' and C are third virial coefficients; etc. For a given gas the virial coefficients are functions 
of temperature only. 

The two sets of coefficients in Eqs. (3.1 1 )  and (3.12) are related as follows: 

D' = 
D - ~ B C + ~ B ~  

(RTI3 
etc. 

The derivation of these relations requires first the elimination of P on the right of Eq. (3.11). An 
expression for P comes from Eq. (3.12) with Z replaced by P V I R T .  The resulting equation is 
a power series in 1/ V which is compared term by term with Eq. (3.12) to provide the equations 
relating the two sets of virial coefficients. They hold exactly only for the two virial expansions 
as infinite series, but are acceptable approximations for the truncated forms treated in Sec. 3.4. 

Many other equations of state have been proposed for gases, but the virial equations 
are the only ones having a firm basis in theory. The methods of statistical mechanics allow 
derivation of the virial equations and provide physical significance to the virial coefficients. 
Thus, for the expansion in 1/ V ,  the term B/  V arises on account of interactions between pairs 
of molecules (Sec. 16.2); the C /  v2 term, on account of three-body interactions; etc. Since two- 
body interactions are many times more common than three-body interactions, and three-body 
interactions are many times more numerous than four-body interactions, etc., the contributions 
to Z of the successively higher-ordered terms decrease rapidly. 

3.3 THE IDEAL GAS 

Since the terms B I V ,  c / v 2 ,  etc., of the virial expansion [Eq. (3.12)] arise on account of 
molecular interactions, the virial coefficients B, C ,  etc., would be zero if no such interactions 
existed. The virial expansion would then reduce to: 

For a real gas, molecular interactions do exist, and exert an influence on the observed 
behavior of the gas. As the pressure of a real gas is reduced at constant temperature, V increases 
and the contributions of the terms B /  V ,  C /  v 2 ,  etc., decrease. For a pressure approaching zero, 
Z approaches unity, not because of any change in the virial coefficients, but because V becomes 

' ~ r o ~ o s e d  by H. Kamerlingh Onnes, "Expression of the Equation of State of Gases and Liquids by Means of 
Series," Communications from the Physical Laboratory of the University of Leiden, no. 71, 1901. 
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infinite. Thus in the limit as the pressure approaches zero, the equation of state assumes the 
same simple form as for the hypothetical case of B = C = . . . = 0; i.e., 

We know from the phase rule that the internal energy of a real gas is a function of 
pressure as well as of temperature. This pressure dependency is the result of forces between 
the molecules. If such forces did not exist, no energy would be required to alter the average 
intermolecular distance, and therefore no energy would be required to bring about volume and 
pressure changes in a gas at constant temperature. We conclude that in the absence of molecular 
interactions, the internal energy of a gas depends on temperature only. These considerations 
of the behavior of a hypothetical gas in which no intermolecular forces exist and of a real gas 
in the limit as pressure approaches zero lead to the definition of an ideal gas as one whose 
macroscopic behavior is characterized by: 

The equation of state: 
-1 (ideal gas) 

An internal energy that is a function of temperature only: 

/ U = U(T) 1 (ideal gas) 

Implied Property Relations for an Ideal Gas 

The definition of heat capacity at constant volume, Eq. (2.16), leads for an ideal gas to the 
conclusion that Cv is a function of temperature only: 

The defining equation for enthalpy, Eq. (2.1 I), applied to an ideal gas, leads to the conclusion 
that H also is a function of temperature only: 

The heat capacity at constant pressure Cp, defined by Eq. (2.20), like Cv, is a function of 
temperature only: 

A useful relation between Cp and Cv for an ideal gas comes from differentiation of Eq. (3.16): 

This equation does not imply that C p  and CV are themselves constant 
for an ideal gas, but only that they vary with temperature in such a way 
that their difference is equal to R.  

For any change of state of an ideal gas Eq. (3.15) may be written: 
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Whence, 
AU = C v d T  S 

By Eq. (3.17), d H  = C p d T  (3.20a) 

Whence, A H = [ C . ~ T  (3.20b) 

Figure 3.5 Internal energy changes for an ideal gas 

Since both the internal energy and Cv of an ideal gas are functions of temperature only, 
AU for an ideal gas is always given by Eq. (3.19b), regardless of the kind of process causing the 
change. This is demonstrated in Fig. 3.5, which shows a graph of internal energy as a function 
of molar volume with temperature as parameter. Since U is independent of V, a plot of U 
vs. V at constant temperature is a horizontal line. For different temperatures, U has different 
values, with a separate line for each temperature. Two such lines are shown in Fig. 3.5, one 
for temperature Tl and one for a higher temperature T2. The dashed line connecting points a 
and b represents a constant-volume process for which the temperature increases from TI to T2 
and the internal energy changes by AU = U2 - U1. This change in internal energy is given 
by Eq. (3.19b) as AU = J Cv d T .  The dashed lines connecting points a and c and points a 
and d represent other processes not occurring at constant volume but which also lead from 
an initial temperature Tl to a final temperature Tz. The graph shows that the change in U for 
these processes is the same as for the constant-volume process, and it is therefore given by the 
same equation, namely, AU = / Cv d T .  However, AU is not equal to Q for these processes, 
because Q depends not only on TI and T2 but also on the path of the process. An entirely 
analogous discusiion applies to the enthalpy H of an ideal gas. (See Sec. 2.16.) 

The ideal gas is a model fluid described by simple property relations, which are frequently 
good approximations when applied to actual gases. In process calculations, gases at pressures 
up to a few bars may often be considered ideal, and simple equations then apply. 

Equations for Process Calculations: Ideal Gases 

For an ideal gas in any mechanically reversible closed-system process, Eq. (2.6), written for a 
unit mass or a mole, may be combined with Eq. (3.19a): 

d Q + d W  = C v d T  
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The work for a mechanically reversible closed-system process is given by Eq. (1.2), also written 
for one mole or a unit mass: 

dW = - P d V  

Whence, d Q = C v d T + P d V  

The two preceding equations for an ideal gas undergoing a reversible process in a closed 
system take several forms through elimination of one of the variables P ,  V ,  or T  by Eq. (3.13). 
Thus, with P  = R T I V  they become: 

Alternatively, let V  = RTI  P :  

With Eq. (3.18) this reduces to: 

d P  
RT-  

P  

Also, d P  
dW = - R d T + R T -  

P  

Finally, let T  = P  V I R :  

Again with Eq. (3.18) this becomes: 

The work is simply: dW = - P d V  

These equations may be applied to various processes, as described in what follows. The 
general restrictions implicit in their derivation are: 

The equations are valid for ideal gases. 
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The process is mechanically reversible. 

The system is closed. 

Isothermal Process 

By Eqs. (3.19b) and (3.20b), A U = A H = O  

By Eqs. (3.21) and (3.23), v2 p2 
Q = RTln-  = -RTln- 

Vl p1 

By Eqs. (3.22) and (3.24), v2 p2 
W = -RTln- = RTln-  

Vl Pl 

Note that Q = - W, a result that also follows from Eq. (2.3). Therefore, 

v2 p2 Q = - W  = RTln-  =-RTln- (constT) 
Vl Pl 

Isobaric Process 

By Eqs. (3.19b) and (3.20b), 

A U =  C v d T  and A H = S C p d ~  

and by Eqs. (3.23) and (3.24), 

S 
Q = CPdT S and W=-R(T2-TI)  

Note that Q = AH, a result also given by Eq. (2.13). Therefore, 

Q = A H =  CPdT (constP) S 
lsochoric (Constant- V) Process 

Equations (3.19b) and (3.20b) again apply: 

A U  = S C V ~ T  and AH = J c p d ~  

By Eqs. (3.21) and (1.3), 

Q = l C v d T  and W = O  

Note that Q = AU, a result also given by Eq. (2.10). Therefore, 

Q = A U =  C v d T  (constV) S 
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Adiabatic Process: Constant Heat Capacities 

An adiabatic process is one for which there is no heat transfer between the system and its 
surroundings; that is, d Q  = 0. Each of Eqs. (3.21), (3.23), and (3.25) may therefore be set 
equal to zero. Integration with Cv and C p  constant then yields simple relations among the 
variables T ,  P ,  and V .  For example, Eq. (3.21) becomes: 

Integration with Cv constant then gives: 

Similarly, Eqs. (3.23) and (3.25) lead to: 

These equations may also be expressed as: 

Where by dej ini t i~n,~ 

T vY-' = constant 

T P ( ' - Y ) / ~  = constant 

P  VY = constant 

Equations (3.29) apply to an ideal gas with constant heat capacities 
undergoing a mechanically reversible adiabatic process. 

The work of an adiabatic process may be obtained from the relation: 

d W = d U = C v d T  

If Cv is constant, integration gives: 

Alternative forms of Eq. (3.3 1) are obtained when Cv is eliminated in favor of the heat-capacity 
ratio y : 

Cp C v + R  R  
- I +-  Y=-=-- 

c v  c v  c v  

3 ~ f  C v  and C p  are constant, y is necessarily constant. For an ideal gas, the assumption of constant y is equivalent 
to the assumption that the heat capacities themselves are constant. This is the only way that the ratio C p / C v  -- y and 
the difference C p  - CV = R can both be constant. Except for the monotonic gases, both C p  and C v  actually increase 
with temperature, but the ratio y is less sensitive to temperature than the heat capacities themselves. 
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R 
Whence, CV = - 

Y - 1  

R AT 
Therefore W = C v A T = -  

Y - 1  

Since RTl = PI Vl and RT2 = P2V2, this expression may be written: 

Equations (3.31) and (3.32) are general for an adiabatic process, whether reversible or 
not. However, V2 is usually not known, and is eliminated from Eq. (3.32) by Eq. (3.29c), valid 
only for mechanically reversible processes. This leads to the expression: 

The same result is obtained when the relation between P and V given by Eq. (3.29~) is used 
for integration of the expression W = - P d V .  

Equations (3.29), (3.31), (3.32), and (3.33) are for ideal gases with constant heat 
capacities. Equations (3.29) and (3.33) also require the process to be mechanically reversible; 
processes which are adiabatic but not mechanically reversible are not described by these 
equations. 

When applied to real gases, Eqs. (3.29) through (3.33) often yield satisfactory approx- 
imations, provided the deviations from ideality are relatively small. For monatomic gases, 
y = 1.67; approximate values of y are 1.4 for diatomic gases and 1.3 for simple polyatomic 
gases such as C02 ,  SO2, NH3, and CH4. 

Polytropic Process 

Since polytropic means "turning many ways:' polytropic process suggests a model of some 
versatility. With 6 a constant, it is defined as a process for which 

P V' = constant (3.34a) 

For an ideal gas equations analogous to Eqs. (3.29a) and (3.29b) are readily derived: 

T vS-' = constant (3.34b) 

and T p('-')IS = constant 

When the relation between P and V is given by Eq. (3.34a), evaluation of P dV yields 
Eq. (3.33) with y  replaced by 6:  
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Moreover, for constant heat capacities, the first law solved for Q yields: 

The several processes already described correspond to the four paths shown on Fig. 3.6 for 
specific values of 6: 

Isobaric process: By Eq. (3.34a), 6 = 0. 
Isothermal process: By Eq. (3.34b), 6 = 1. 

Adiabatic process: 6 = y .  

Isochoric process: By Eq. (3.34a), dV/dP = V/P6; for constant V, 6 = f oo. 

Figure 3.6 Paths of polytropic processes characterized by specific values of 6 

lrreversi ble Process 

The equations developed in this section have been derived for mechanically reversible, closed- 
system processes for ideal gases. However, those equations which relate changes in state func- 
tions only are valid for ideal gases regardless of the process. They apply equally to reversible 
and irreversible processes in both closed and open systems, because changes in state functions 
depend only on the initial and final states of the system. On the other hand, an equation for Q 
or W is specific to the process considered in its derivation. 

The work of an irreversible process is calculated by a two-step procedure. First, W is 
determined for a mechanically reversible process that accomplishes the same change of state 
as the actual irreversible process. Second, this result is multiplied or divided by an efficiency to 
give the actual work. If the process produces work, the absolute value for the reversible process 
is too large and must be multiplied by an efficiency. If the process requires work, the value for 
the reversible process is too small and must be divided by an efficiency. 

Applications of the concepts and equations developed in this section are illustrated in the 
examples that follow. In particular, the work of irreversible processes is treated in the last part 
of Ex. 3.3. 
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3.4 APPLICATION OF THE VlRlAL EQUATIONS 

The two forms of the virial expansion given by Eqs. (3.1 1) and (3.12) are infinite series. For 
engineering purposes their use is practical only where convergence is very rapid, that is, where 
two or three terms suffice for reasonably close approximations to the values of the series. This 
is realized for gases and vapors at low to moderate pressures. 

Figure 3.10 shows a compressibility-factor graph for methane. Values of the compressibil- 
ity factor Z (as calculated from P V T  data for methane by the defining equation Z = P V /  R T )  
are plotted vs. pressure for various constant temperatures. The resulting isotherms show graphi- 
cally what the virial expansion in P is intended to represent analytically. All isotherms originate 
at the value Z = 1 for P = 0. In addition the isotherms are nearly straight lines at low pres- 
sures. Thus the tangent to an isotherm at P = 0 is a good approximation of the isotherm from 
P -+ 0 to some finite pressure. Differentiation of Eq. (3.1 1) for a given temperature gives: 
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from which, 
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Figure 3.10 Compressibility-factor graph for methane 

Thus the equation of the tangent line is: 

a result also given by truncating Eq. (3.11) to two terms. A more common form of this equation 
results from the substitution (Sec. 3.2), B' = BIRT: 

Equation (3.12) may also be truncated to two terms for application at low pressures: 

However, Eq. (3.37) is more convenient in application and is at least as accurate as Eq. (3.38). 
Thus when the virial equation is truncated to two terms, Eq. (3.37) is preferred. This equation 
satisfactorily represents the P V T behavior of many vapors at subcritical temperatures up to a 
pressure of about 5 bar. At higher temperatures it is appropriate for gases over an increasing 
pressure range as the temperature increases. The second virial coefficient B is substance depen- 
dent and a function of temperature. Experimental values are available for a number of gases.4 
Moreover, estimation of second virial coefficients is possible where no data are available, as 
discussed in Sec. 3.6. 

4 ~ .  H. Dymond and E. B. Smith, The Mrial Coeficients of Pure Gases and Mixtures, pp. 1-10, Clarendon Press, 
Oxford, 1980. 
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For pressures above the range of applicability of Eq. (3.37) but below the critical pres- 
sure, the virial equation truncated to three terms often provides excellent results. In this case 
Eq. (3.12), the expansion in 1/ V ,  is far superior to Eq. (3.1 1). Thus when the virial equation 
is truncated to three terms, the appropriate form is: 

This equation can be solved directly for pressure, but is cubic in volume. Solution for V is 
easily done by an iterative scheme with a calculator. 

Figure 3.1 1 Density-series virial coefficients B and C for nitrogen 

Values of C ,  like those of B,  depend on the gas and on temperature. However, much less 
is known about third virial coefficients than about second virial coefficients, though data for a 
number of gases are found in the literature. Since virial coefficients beyond the third are rarely 
known and since the virial expansion with more than three terms becomes unwieldy, its use is 
uncommon. 

Figure 3.1 1 illustrates the effect of temperature on the virial coefficients B and C for 
nitrogen; although numerical values are different for other gases, the trends are similar. The 
curve of Fig. 3.1 1 suggests that B increases monotonically with T ;  however, at temperatures 
much higher than shown B reaches a maximum and then slowly decreases. The temperature 
dependence of C is more difficult to establish experimentally, but its main features are clear: C 
is negative at low temperatures, passes through a maximum at a temperature near the critical, 
and thereafter decreases slowly with increasing T .  

A class of equations inspired by Eq. (3.12), known as extended virial equations, is illus- 
trated by the BenedictIWebbRubin equation? 

5 ~ .  Benedict, G. B. Webb, L. C. Rubin, J. Chern. Phys., vol. 8, pp. 334-345, 1940; vol. 10, pp. 747-758,1942. 
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RT BORT - AO - C O / T ~  bRT - a aa  c Y -Y 
P =- - +  

V V + V 3  + - + - ( ~ + ~ ) e x p ~  V 6  V 3T 2  

where Ao, Bo, Co, a ,  b, c,  a ,  and y are all constant for a given fluid. This equation and its 
modifications, despite their complexity, are used in the petroleum and natural-gas industries 
for light hydrocarbons and a few other commonly encountered gases. 
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3.5 CUBIC EQUATIONS OF STATE 

If an equation of state is to represent the PVT behavior of both liquids and vapors, it must 
encompass a wide range of temperatures and pressures. Yet it must not be so complex as to 
present excessive numerical or analytical difficulties in application. Polynomial equations that 
are cubic in molar volume offer a compromise between generality and simplicity that is suitable 
to many purposes. Cubic equations are in fact the simplest equations capable of representing 
both liquid and vapor behavior. 

The van der Waals Equation of State 

The first practical cubic equation of state was proposed by J. D. van der waals6 in 1873: 

Here, a and b are positive constants; when they are zero, the ideal-gas equation is recovered. 
Given values of a and b for a particular fluid, one can calculate P as a function of V for 

various values of T. Figure 3.12 is a schematic P V diagram showing three such isotherms. 
Superimposed is the "dome" representing states of saturated liquid and saturated vapor. For 
the isotherm TI > T,, pressure is a monotonically decreasing function with increasing molar 
volume. The critical isotherm (labeled T,) contains the horizontal inflection at C characteristic 
of the critical point. For the isotherm T2 < T,, the pressure decreases rapidly in the subcooled- 
liquid region with increasing V; after crossing the saturated-liquid line, it goes through a 
minimum, rises to a maximum, and then decreases, crossing the saturated-vapor line and 
continuing downward into the superheated-vapor region. 

Experimental isotherms do not exhibit this smooth transition from saturated liquid to 
saturated vapor; rather, they contain a horizontal segment within the two-phase region where 
saturated liquid and saturated vapor coexist in varying proportions at the saturation or vapor 

6~ohannes Diderik van der Waals (1837-1923), Dutch physicist who won the 1910 Nobel Prize for physics. 
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pressure. This behavior, shown by the dashed line in Fig. 3.12, is nonanalytic, and we accept 
as inevitable the unrealistic behavior of equations of state in the two-phase region. 

Figure 3.12 Isotherms as given by a cubic equation of state 

Actually, the P V behavior predicted in this region by proper cubic equations of state is 
not wholly fictitious. When the pressure is decreased on a saturated liquid devoid of vapor- 
nucleation sites in a carefully controlled experiment, vaporization does not occur, and the liquid 
phase persists alone to pressures well below its vapor pressure. Similarly, raising the pressure on 
a saturated vapor in a suitable experiment does not cause condensation, and the vapor persists 
alone to pressures well above the vapor pressure. These nonequilibrium or metastable states of 
superheated liquid and subcooled vapor are approximated by those portions of the P V isotherm 
which lie in the two-phase region adjacent to the saturated-liquid and saturated-vapor states. 

Cubic equations of state have three volume roots, of which two may be complex. Phys- 
ically meaningful values of V are always real, positive, and greater than constant b. For an 
isotherm at T > T,, reference to Fig. 3.12 shows that solution for V at any positive value of 
P yields only one such root. For the critical isotherm (T = T,), this is also true, except at 
the critical pressure, where there are three roots, all equal to V,. For isotherms at T < T,, the 
equation may exhibit one or three real roots, depending on the pressure. Although these roots 
are real and positive, they are not physically stable states for the portion of an isotherm lying 
between saturated liquid and saturated vapor (under the "dome"). Only the roots for P = P Sat, 
namely Vsat(liq) and Vsat(vap), are stable states, connected by the horizontal portion of the true 
isotherm. For other pressures (as indicated by the horizontal lines shown on Fig. 3.12 above 
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and below P Sat), the smallest root is a liquid or "liquid-like" volume, and the largest is a vapor 
or "vapor-like" volume. The third root, lying between the other values, is of no significance. 

A Generic Cubic Equation of State 
Since the introduction of the van der Waals equation, scores of cubic equations of state have 
been proposed. All are special cases of the equation: 

Here, b, 8, K ,  A, and r]  are parameters which in general depend on temperature and (for mix- 
tures) composition. Although this equation appears to possess great flexibility, it has inherent 
limitations because of its cubic form.7 It reduces to the van der Waals equation when q = b, 
O = a , a n d ~ = h = O .  

An important class of cubic equations results from the preceding equation with the 
assignments: 

It is thus transformed into an expression general enough to serve as a generic cubic equation of 
state, which reduces to all others of interest here upon assignment of appropriate parameters: 

p = - -  
V - b (V + cb)(V + ab)  

For a given equation, E and a are pure numbers, the same for all substances, whereas parameters 
a(T) and b are substance dependent. The temperature dependence of a(T) is specific to each 
equation of state. For the van der Waals equation, a(T) = a is a substance-dependent constant, 
and€ = 0 = 0. 

Determination of Equation-of-State Parameters 
The constants in an equation of state for a particular substance may be evaluated by a fit to 
available P VT data. For cubic equations of state, however, suitable estimates are usually found 
from values for the critical constants T, and PC. Since the critical isotherm exhibits a horizontal 
inflection at the critical point, we may impose the mathematical conditions: 

where the subscript "cr" denotes the critical point. Differentiation of Eq. (3.41) yields expres- 
sions for both derivatives, which may be equated to zero for P = PC, T = T,, and V = V,. 
The equation of state may itself be written for the critical conditions. These three equations 
contain five constants: PC, V,, T,, a(T,), and b. Of the several ways to treat these equations, the 

7 ~ .  M. Abbott, AIChE J., vol. 19, pp. 596601, 1973; Adv. in Chern. Series 182, K .  C. Chao and R. L. Robinson, 
Jr., eds., pp. 47-70, Am. Chem. Soc., Washington, D.C., 1979. 
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most suitable is elimination of Vc to yield expressions relating a(Tc) and b to PC and T,. The 
reason is that PC and Tc are usually more accurately known than V,. 

An equivalent, but more straightforward, procedure is illustrated for the van der Waals 
equation. Since V = Vc for each of the three roots at the critical point, 

Equation (3.40) expanded in polynomial form becomes: 

Recall that for a particular substance parameter a in the van der Waals equation is a constant, 
independent of temperature. 

Term-by-term comparison of Eqs. (A) and (B) provides three equations: 

Solving Eq. (D) for a ,  combining the result with Eq. (E), and solving for b gives: 

Substitution for b in Eq. (C) allows solution for V,, which can then be eliminated from the 
equations for a and b: 

Although these equations may not yield the best possible results, they provide reasonable 
values which can almost always be determined, because critical temperatures and pressures (in 
contrast to extensive P V T  data) are often known, or can be reliably estimated. 

Substitution for V, in the equation for the critical compressibility factor reduces it 
immediately to: 

pcvc 3 z =-- - - 
" -  RT, 8 

A single value for Z,, applicable alike to all substances, results whenever the parameters of a 
two-parameter equation of state are found by imposition of the critical constraints. Different 
values are found for different equations of state, as indicated in Table 3.1, p. 93. Unfortunately, 
the values so obtained do not in general agree with those calculated from experimental values 
of Tc, PC, and Vc; each chemical species in fact has its own value of Z,. Moreover, the values 
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given in Table B.l of App. B for various substances are almost all smaller than any of the 
equation values given in Table 3.1. 

An analogous procedure may be applied to the generic cubic, Eq. (3.41), yielding 
expressions for parameters a(Tc) and b. For the former, 

This result may be extended to temperatures other than the critical by introduction of a dimen- 
sionless function a(T,) that becomes unity at the critical temperature. Thus 

Function a(Tr) is an empirical expression, specific to a particular equation of state. Parameter 
b is given by: 

In these equations C2 and Q are pure numbers, independent of substance and determined for a 
particular equation of state from the values assigned to t and a. 

The modern development of cubic equations of state was initiated in 1949 by publication 
of the RedlicWKwong (RK) equation:' 

where, in Eq. (3.42), a(T,) = T,-''~. 

Theorem of Corresponding States; Acentric Factor 

Experimental observation shows that compressibility factors Z for different fluids exhibit sim- 
ilar behavior when correlated as a function of reduced temperature T, and reducedpressure P,; 
by dejinition, 

T T = -  
I' - and 

Tc 

This is the basis for the two-parameter theorem of corresponding states: 

All fluids, when compared at the same reduced temperature and re- 
duced pressure, have approximately the same compressibility factor, 
and all deviate from ideal-gas behavior to about the same degree. 

Although this theorem is very nearly exact for the simple fluids (argon, krypton, and 
xenon) systematic deviations are observed for more complex fluids. Appreciable improvement 

80tto Redlich and J. N. S. Kwong, Chem. Rev., vol. 44, pp. 233-244, 1949. 
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results from introduction of a third corresponding-states parameter, characteristic of molecular 
structure; the most popular such parameter is the acentric factor w ,  introduced by K. S. Pitzer 
and  coworker^.^ 

I I 

Figure 3.13 Approximate temperature dependence of the reduced vapor pressure 

The acentric factor for a pure chemical species is defined with reference to its vapor 
pressure. Since the logarithm of the vapor pressure of a pure fluid is approximately linear in 
the reciprocal of absolute temperature, 

d log P,Sat 
= S 

d( l lTr )  

where P T t  is the reduced vapor pressure, T, is the reduced temperature, and S is the slope of 
a plot of log P,Sat vs. 1/T,. Note that "log" denotes a logarithm to the base 10. 

If the two-parameter theorem of corresponding states were generally valid, the slope 
S would be the same for all pure fluids. This is observed not to be true; each fluid has its 
own characteristic value of S, which could in principle serve as a third corresponding-states 
parameter. However, Pitzer noted that all vapor-pressure data for the simple fluids (Ar, Kr, 
Xe) lie on the same line when plotted as log P,Sat vs. 1/T, and that the line passes through 
log PTt  = -1.0 at T, = 0.7. This is illustrated in Fig. 3.13. Data for other fluids define 
other lines whose locations can be fixed in relation to the line for the simple fluids (SF) by the 
difference: 

log p,Sa t ( s~)  - log p,sat 

The acentric factor is defined as this difference evaluated at T, = 0.7: 

9 ~ u l l y  described in K. S. Pitzer, Thermodynamics, 3d ed., App. 3, McGraw-Hill, New York, 1995 
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Therefore w can be determined for any fluid from Tc, PC, and a single vapor-pressure measure- 
ment made at T, = 0.7. Values of w and the critical constants T,, PC, and V, for a number of 
fluids are listed in App. B. 

The definition of w makes its value zero for argon, krypton, and xenon, and experimental 
data yield compressibility factors for all three fluids that are correlated by the same curves 
when Z is represented as a function of T, and P,. This is the basic premise of the following 
three-parameter theorem of corresponding states: 

All fluids having the same value of w,  when compared at the same T, 
and Pry have about the same value of 2, and all deviate from ideal-gas 
behavior to about the same degree. 

Vapor & Vapor-Like Roots of the Generic Cubic Equation of State 

Although one may solve explicitly for its three roots, the generic cubic equation of state, 
Eq. (3.41), is in practice far more commonly solved by iterative procedures.10 Convergence 
problems are most likely avoided when the equation is rearranged to a form suited to the 
solution for a particular root. For the largest root, i.e., a vapor or vapor-like volume, Eq. (3.41) 
is multiplied through by (V - b ) / R T .  It can then be written: 

RT a ( T )  V - b  
V = - - + b - -  

P P (V  + eb)(V + a b )  

Solution for V may be by trial, iteration, or with the solve routine of a software package. An 
initial estimate for V is the ideal-gas value R T /  P. For iteration, this value is substituted on the 
right side of Eq. (3.46). The resulting value of V on the left is then returned to the right side, 
and the process continues until the change in V is suitably small. 

An equation for Z equivalent to Eq. (3.46) is obtained through the substitution V = 
Z R T I P .  In addition, the definition of two dimensionless quantities leads to simplification. 
Thus, 

These substitutions into Eq. (3.46) yield: 

Z = l + B - q p  
z-B (3.49) 

( Z  + €B)(Z  + ap> 

Equations (3.47) and (3.48) in combination with Eqs. (3.42) and (3.43) yield: 

'O~uch procedures are built into computer software packages for technical calculations. With these packages one 
can solve routinely for V in equations such as (3.41) with little thought as to how it is done. 
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Iterative solution of Eq. (3.49) starts with the value Z = 1 substituted on the right side. 
The calculated value of Z is returned to the right side and the process continues to convergence. 
The final value of Z yields the volume root through V = Z R T I  P. 

Liquid & Liquid-Like Roots of the Generic Cubic Equation of State 

Equation (3.46) may be solved for the V in the numerator of the final fraction to give: 

V = b + ( V + r b ) ( V + a b )  [ R T  +a:;)- V P ]  

This equation with a starting value of V = b on the right side converges upon iteration to a 
liquid or liquid-like root. 

An equation for Z equivalent to Eq. (3.52) is obtained when Eq. (3.49) is solved for the 
Z in the numerator of the final fraction: 

For iteration a starting value of Z = ,6 is substituted on the right side. Once Z is known, the 
volume root is V = Z R T I  P .  

Equations of state which express Z as a function of T, and P, are said to be generalized, 
because of their general applicability to all gases and liquids. Any equation of state can be put 
into this form to provide a generalized correlation for the properties of fluids. This allows the 
estimation of property values from very limited information. Equations of state, such as the van 
der Waals and RedlichIKwong equations, which express Z as functions of T, and P, only, yield 
two-parameter corresponding states correlations. The SoaveRedlicWKwong (SRK) equation1' 
and the PengRobinson (PR) equation,12 in which the acentric factor enters through function 
a(T,; w)  as an additional parameter, yield three-parameter corresponding-states correlations. 
The numerical assignments for parameters r ,  a ,  Q, and \Ir, both for these equations and for 
the van der Waals and RedlicWKwong equations, are given in Table 3.1. Expressions are also 
given for a(T,; w)  for the SRK and PR equations. 

Example 3.8 
Given that the vapor pressure of n-butane at 350 K (76.85%) is 9.4573 bar, find 
the molar volumes of (a) saturated-vapor and (b) saturated-liquid n-butane at these 
conditions as given by the RedlicWKwong equation. 

"G.  Soave, Chem. Eng. Sci., vol. 27, pp. 1197-1203, 1972. 
"D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., vol. 15, pp. 59-64, 1976. 
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For comparison, values of V u  and V' calculated for the conditions of Ex. 3.8 by all four 
of the cubic equations of state considered here are summarized as follows: 

The Soave/Redlich/Kwong and the PengIRobinson equations were developed specifically for 
vaporlliquid equilibrium calculations (Sec. 14.2). 

Roots of equations of state are most easily found with a software package such as 
Mathcad@ or ~ a ~ l e @ ,  in which iteration is an integral part of the equation-solving routine. 
Starting values or bounds may be required, and must be appropriate to the particular root of 
interest. A Mathcad@ program for solving Ex. 3.8 is given in App. D.2. 

3.6 GENERALIZED CORRELATIONS FOR GASES 

~ " / c r n ~ m o l - ~  

Generalized correlations find widespread use. Most popular are correlations of the kind de- 
veloped by Pitzer and coworkers for the compressibility factor Z and for the second virial 
coefficient B. l 3  

~ ~ / c m ~ r n o l - '  

Exp. 

Pitzer Correlations for the Compressibility Factor 

Exp. vdW RK SRK PR 

The correlation for Z takes the form: 

vdW RK SRK PR 

where Z O  and Z' are functions of both Tr and P,. When w = 0, as is the case for the simple fluids, 
the second term disappears, and Z O  becomes identical with Z .  Thus a generalized correlation 
for Z as a function of T, and P, based on data for just argon, krypton, and xenon provides 
the relationship Z O  = F'(T,, P,). By itself, this represents a two-parameter corresponding- 
states correlation for Z .  Since the second term of Eq. (3.54) is a relatively small correction to 
this correlation, its omission does not introduce large errors, and a correlation for Z0 may be 

13see Pitzer, op. cit. 
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used alone for quick but less accurate estimates of Z than are obtained from a three-parameter 
correlation. 

Equation (3.54) is a simple linear relation between Z and o for given values of Tr and P,. 
Experimental data for Z for nonsimple fluids plotted vs. w at constant Tr and Pr do indeed yield 
approximately straight lines, and their slopes provide values for Z' from which the generalized 
function Z' = F'(T,, P,) can be constructed. 

Of the Pitzer-type correlations available, the one developed by Lee and ~ e s l e r ' ~  has 
found greatest favor. Although its development is based on a modified form of the Bene- 
dict/WebblRubin equation of state, it takes the form of tables which present values of Z0 and 
Z' as functions of Tr and Pr . These are given in App. E as Tables E. 1 through E.4. Use of these 
tables often requires interpolation, which is treated at the beginning of App. F. The nature of 
the correlation is indicated by Fig. 3.14, a plot of ZO vs. Pr for six isotherms. 

Figure 3.14 The LeeIKesler correlation for Z0 = FO(T,, Pr) 

The LeeIKesler correlation provides reliable results for gases which are nonpolar or only 
slightly polar; for these, errors of no more than 2 or 3 percent are indicated. When applied to 
highly polar gases or to gases that associate, larger errors can be expected. 

The quantum gases (e.g., hydrogen, helium, and neon) do not conform to the same 
corresponding-states behavior as do normal fluids. Their treatment by the usual correlations is 

1 4 ~ .  I. Lee and M. G. Kesler,AIChEJ., vol. 21, pp. 510-527,1975 
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sometimes accommodated by use of temperature-dependent effective critical parameters.15 For 
hydrogen, the quantum gas most commonly found in chemical processing, the recommended 
equations are: 

43.6 
Tc/K = 

21.8 (for HZ) (3.55) 

51.5 
vC/cm3 mol-' = 

9.91 (for Hz) (3.57) 
1 - --- 

2.016 T 

where T is absolute temperature in kelvins. Use of these effective critical parameters for 
hydrogen requires the further specification that w = 0. 

Pitzer Correlations for the Second Virial Coefficient 

The tabular nature of the generalized compressibility-factor correlation is a disadvantage, but 
the complexity of the functions ZO and 2' precludes their accurate representation by simple 
equations. However, we can give approximate analytical expression to these functions for a 
limited range of pressures. The basis for this is Eq. (3.37), the simplest form of the virial 
equation: 

Thus, Pitzer and coworkers proposed a second correlation, which yields values for B Pc/RTc: 

Together, these two equations become: 

Comparison of this equation with Eq. (3.54) provides the following identifications: 

and Pr z1 = B'- 
Tr 

"J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 
3d ed., pp. 172-173, Prentice Hall PTR, Upper Saddle River, NJ, 1999. 
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Second virial coefficients are functions of temperature only, and similarly B0 and B' are 
functions of reduced temperature only. They are well represented by the following equations: l6 

Figure 3.15 Comparison of correlations for Z0. The virial-coefficient correlation is 
represented by the straight lines; the LeeIKesler correlation, by the points. In the region 
above the dashed line the two correlations differ by less than 2% 

The simplest form of the virial equation has validity only at low to moderate pressures 
where Z is linear in pressure. The generalized virial-coefficient correlation is therefore useful 
only where Z0 and 2' are at least approximately linear functions of reduced pressure. Fig- 
ure 3.15 compares the linear relation of Z0 to P, as given by Eqs. (3.60) and (3.61) with values 
of Z0 from the LeeIKesler compressibility-factor correlation, Tables E. 1 and E.3. The two cor- 
relations differ by less than 2% in the region above the dashed line of the figure. For reduced 
temperatures greater than T, x 3, there appears to be no limitation on the pressure. For lower 
values of T, the allowable pressure range decreases with decreasing temperature. A point is 
reached, however, at T, x 0.7 where the pressure range is limited by the saturation pressure.17 

16~hese  correlations first appeared in 1975 in the third edition of this book, attributed as a personal communication 
to M. M. Abbott, who developed them. 

17~lthough the LeeIKesler tables, App. E, list values for superheated vapor and subcooled liquid, they do not provide 
values at saturation conditions. 
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This is indicated by the left-most segment of the dashed line. The minor contributions of 2' to 
the correlations are here neglected. In view of the uncertainty associated with any generalized 
correlation, deviations of no more than 2% in 2' are not significant. 

The relative simplicity of the generalized virial-coefficient correlation does much to 
recommend it. Moreover, temperatures and pressures of many chemical-processing operations 
lie within the region where it does not deviate by a significant amount from the compressibility- 
factor correlation. Like the parent correlation, it is most accurate for nonpolar species and least 
accurate for highly polar and associating molecules. 

The question often arises as to when the ideal-gas equation may be used as a reasonable 
approximation to reality. Figure 3.16 can serve as a guide. 

equation 

Example 3.9 
Determine the molar volume of n-butane at 510K and 25bar by each of the 
following: 

(a) The ideal-gas equation. 
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3.7 GENERALIZED CORRELATIONS FOR LIQUIDS 

Although the molar volumes of liquids can be calculated by means of generalized cubic equa- 
tions of state, the results are often not of high accuracy. However, the LeeIKesler correlation 
includes data for subcooled liquids, and Fig. 3.14 illustrates curves for both liquids and gases. 
Values for both phases are provided in Tables E.l through E.4. Recall, however, that this 
correlation is most suitable for nonpolar and slightly polar fluids. 

In addition, generalized equations are available for the estimation of molar volumes of 
saturated liquids. The simplest equation, proposed by ~ackett," is an example: 

The only data required are the critical constants, given in App. B. Results are usually accurate 
to 1 or 2%. 

Lydersen, Greenkorn, and ~ o u g e n ' ~  developed a two-parameter corresponding-states 
correlation for estimation of liquid volumes. It provides a correlation of reduced density p, as 
a function of reduced temperature and pressure. By definition, 

1 8 ~ .  G. Rackett, J. Chem. Eng. Data, vol. 15, pp. 514-517, 1970; see also C. F. Spencer and S. B. Adler, ibid., 
vol. 23, pp. 82-89, 1978, for a review of available equations. 

1 9 ~ .  L. Lydersen, R. A. Greenkorn, and 0. A. Hougen, "Generalized Thermodynamic Properties of Pure Fluids," 
Univ. Wisconsin, Eng. Expt. Sta. Rept. 4,  1955. 
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where p, is the density at the critical point. The generalized correlation is shown by Fig. 3.17. 
This figure may be used directly with Eq. (3.64) for determination of liquid volumes if the 
value of the critical volume is known. A better procedure is to make use of a single known 
liquid volume (state 1) by the identity, 

Figure 3.17 Generalized density correlation for liquids 

where V2 = required volume 
VI = known volume 

p,, , p, = reduced densities read from Fig. 3.17 

This method gives good results and requires only experimental data that are usually available. 
Figure 3.17 makes clear the increasing effects of both temperature and pressure on liquid 
density as the critical point is approached. 

Correlations for the molar densities as functions of temperature are given for many pure 
liquids by Daubert and coworkers.20 

Example 3.1 2 
For ammonia at 310 K(36.85%), estimate the density of: 

'OT. E. Daubert, R. P. Danner, H. M. Sibul, and C .  C. Stebbins, Physical and Thermodynamic Properties of Pure 
Chemicals: Data Compilation, Taylor & Francis, Bristol, PA, extant 1995. 
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PROBLEMS 

3.1. Express the volume expansivity and the isothermal compressibility as functions of den- 
sity p and its partial derivatives. For water at 323.15 K (50°C) and 1 bar, K = 44.18 x 
bar-'. To what pressure must water be compressed at 323.15 K (50°C) to change its 
density by 1 %? Assume that K is independent of P. 
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3.2. Generally, volume expansivity B and isothermal compressibility K depend on T and P. 
Prove that: 

3.3. The Tait equation for liquids is written for an isotherm as: 

where V is molar or specific volume, Vo is the hypothetical molar or specific volume at 
zero pressure, and A and B are positive constants. Find an expression for the isothermal 
compressibility consistent with this equation. 

3.4. For liquid water the isothermal compressibility is given by: 

where c and b are functions of temperature only. If 1 kg of water is compressed isother- 
mally and reversibly from 1 to 500 bar at 333.15 K (60°C), how much work is required? 
At 333.15 K (60"C), b = 2700 bar and c = 0.125 cm3 g-'. 

3.5. Calculate the reversible work done in compressing 0.0283 m3 of mercury at a constant 
temperature of 273.15 K(O°C) from 1 atm to 3000 atm. The isothermal compressibility 
of mercury at 273.15 K(O"C) is 

where P is in atm and K is in atm-'. 

3.6. Five kilograms of liquid carbon tetrachloride undergo a mechanically reversible, iso- 
baric change of state at 1 bar during which the temperature changes from 273.15 K 
(0°C) to 293.15 K (20°C). Determine AV', W, Q, AH t,  and A U t .  The properties for 
liquid carbon tetrachloride at 1 bar and 273.15 K (0°C) may be assumed independent 
of temperature: p = 1.2 x lop3 K-' , Cp = 0.84 kJ kg-' K-l, and p = 1590 kg mP3. 

3.7. A substance for which K is a constant undergoes an isothermal, mechanically reversible 
process from initial state (PI, Vl) to final state (P2, V2), where V is molar volume. 

(a) Starting with the definition of K, show that the path of the process is described by: 

(b) Determine an exact expression which gives the isothermal work done on 1 mol of 
this constant-K substance. 

3.8. One mole of an ideal gas with Cp = (7/2)R and Cv = (512) R expands from PI = 8 bar 
and Tl = 600 K to P2 = 1 bar by each of the following paths: 
(a) Constant volume; (b) Constant temperature; (c) Adiabatically. 
Assuming mechanical reversibility, calculate W, Q, AU, and AH for each process. 
Sketch each path on a single P V diagram. 
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3.9. An ideal gas initially at 600 K and 10 bar undergoes a four-step mechanically reversible 
cycle in a closed system. In step 12, pressure decreases isothermally to 3 bar; in step 23, 
pressure decreases at constant volume to 2 bar; in step 34, volume decreases at constant 
pressure; and in step 41, the gas returns adiabatically to its initial state. 

(a) Sketch the cycle on a PV diagram. 
(b) Determine (where unknown) both T  and P for states 1, 2, 3, and 4. 
(c) Calculate Q, W, AU, and A H  for each step of the cycle. 

Data: C p  = (7/2)R and Cv = (5/2)R. 

3.10. An ideal gas, Cp = (5/2)R and Cv = (3/2)R, is changed from P = 1 bar and 
V{ = 12 m3 to P2 = 12 bar and V$ = 1 m3 by the following mechanically reversible 
processes: 

(a) Isothermal compression. 
(b) Adiabatic compression followed by cooling at constant pressure. 
(c) Adiabatic compression followed by cooling at constant volume. 
(d) Heating at constant volume followed by cooling at constant pressure. 
(e) Cooling at constant pressure followed by heating at constant volume. 

Calculate Q, W, AU*, and AHt for each of these processes, and sketch the paths of all 
processes on a single P V diagram. 

3.11. The environmental lapse rate d T / d z  characterizes the local variation of temperature 
with elevation in the earth's atmosphere. Atmospheric pressure varies with elevation 
according to the hydrostatic formula, 

where M is molar mass, p is molar density, and g is the local acceleration of gravity. 
Asssume that the atmosphere is an ideal gas, with T  related to P by the polytropic 
formula, Eq. (3.34~). Develop an expression for the environmental lapse rate in relation 
to M, g,  R, and 6. 

3.12. An evacuated tank is filled with gas from a constant-pressure line. Develop an expression 
relating the temperature of the gas in the tank to the temperature T' of the gas in the line. 
Assume the gas is ideal with constant heat capacities, and ignore heat transfer between 
the gas and the tank. Mass and energy balances for this problem are treated in Ex. 2.12. 

3.13. Show how Eqs. (3.35) and (3.36) reduce to the appropriate expressions for the four 
particular values of 6 listed following Eq. (3.36). 

3.14. A tank of 0.1-m3 volume contains air at 298.15 K (25°C) and 101.33 kPa. The tank 
is connected to a compressed-air line which supplies air at the constant conditions of 
3 18.15 K (45°C) and 1500 kPa. A valve in the line is cracked so that air flows slowly into 
the tank until the pressure equals the line pressure. If the process occurs slowly enough 
that the temperature in the tank remains at 298.15 K (25"C), how much heat is lost from 
the tank? Assume air to be an ideal gas for which C p  = (7/2)R and Cv = (5/2)R. 
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3.15. Gas at constant T and P is contained in a supply line connected through a valve to a 
closed tank containing the same gas at a lower pressure. The valve is opened to allow 
flow of gas into the tank, and then is shut again. 

(a )  Develop a general equation relating n 1 and n2, the moles (or mass) of gas in the tank 
at the beginning and end of the process, to the properties U1 and U2, the internal 
energy of the gas in the tank at the beginning and end of the process, and H', the 
enthalpy of the gas in the supply line, and to Q, the heat transferred to the material 
in the tank during the process. 

(b )  Reduce the general equation to its simplest form for the special case of an ideal gas 
with constant heat capacities. 

(c) Further reduce the equation of (b)  for the case of nl = 0.  
( d )  Further reduce the equation of ( c )  for the case in which, in addition, Q = 0. 
( e )  Treating nitrogen as an ideal gas for which C p  = (7/2)R,  apply the appropriate 

equation to the case in which a steady supply of nitrogen at 298.15 K (25°C) and 3 
bar flows into an evacuated tank of 4-m3 volume, and calculate the moles of nitrogen 
that flow into the tank to equalize the pressures for two cases: 
1. Assume that no heat flows from the gas to the tank or through the tank walls. 

2. The tank weighs 400 kg, is perfectly insulated, has an initial temperature of 
298.15K (25"C), has a specific heat of 0.46 kJ kgp1 K-', and is heated by the 
gas so as always to be at the temperature of the gas in the tank. 

3.16. Develop equations which may be solved to give the final temperature of the gas remaining 
in a tank after the tank has been bled from an initial pressure PI to a final pressure P2. 
Known quantities are initial temperature, tank volume, heat capacity of the gas, total 
heat capacity of the containing tank, P I ,  and P2. Assume the tank to be always at the 
temperature of the gas remaining in the tank, and the tank to be perfectly insulated. 

3.17. A rigid, nonconducting tank with a volume of 4 m3 is divided into two unequal parts 
by a thin membrane. One side of the membrane, representing 113 of the tank, contains 
nitrogen gas at 6 bar and 373.15 K (lOO°C), and the other side, representing 213 of the 
tank, is evacuated. The membrane ruptures and the gas fills the tank. 

(a )  What is the final temperature of the gas? How much work is done? Is the process 
reversible? 

(b )  Describe a reversible process by which the gas can be returned to its initial state. 
How much work is done? 

Assume nitrogen is an ideal gas for which C p  = (7 /2 )R  and Cv = (5/2)R.  

3.18. An ideal gas, initially at 303.15 K (30°C) and 100 kPa, undergoes the following cyclic 
processes in a closed system: 
(a )  In mechanically reversible processes, it is first compressed adiabatically to 500 kPa, 

then cooled at a constant pressure of 500 kPa to 303.15 K (30°C), and finally 
expanded isothermally to its original state. 

(b )  The cycle traverses exactly the same changes of state, but each step is irreversible 
with an efficiency of 80% compared with the corresponding mechanically reversible 
process. 

Calculate Q, W, A U ,  and A H  for each step of the process and for the cycle. Take 
C p  = (7 /2 )R  and Cv = (5/2)R.  
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3.19. One cubic meter of an ideal gas at 600 K and 1000 kPa expands to five times its initial 
volume as follows: 

(a )  By a mechanically reversible, isothermal process. 
(b)  By a mechanically reversible, adiabatic process. 
(c) By an adiabatic, irreversible process in which expansion is against a restraining 

pressure of 100 kPa. 
For each case calculate the final temperature, pressure, and the work done by the gas. 
C p  = 21 3 mold' K-'. 

3.20. One mole of air, initially at 423.15 K (150°C) and 8 bar, undergoes the following 
mechanically reversible changes. It expands isothermally to a pressure such that when 
it is cooled at constant volume to 323.15 K (50°C) its final pressure is 3 bar. Assuming 
air is an ideal gas for which C p  = (712) R and Cv = (512) R ,  calculate W ,  Q , A  U ,  and 
A H .  

3.21. An ideal gas flows through a horizontal tube at steady state. No heat is added and no 
shaft work is done. The cross-sectional area of the tube changes with length, and this 
causes the velocity to change. Derive an equation relating the temperature to the velocity 
of the gas. If nitrogen at 423.15 K (150°C) flows past one section of the tube at a velocity 
of 2.5 m s-', what is its temperature at another section where its velocity is 50 m s-'? 
Let C p  = (7/2)R.  

3.22. One mole of an ideal gas, initially at 303.15 K (30°C) and 1 bar, is changed to 403.15 
K (130°C) and 10 bar by three different mechanically reversible processes: 

The gas is first heated at constant volume until its temperature is 403.15 K ( 1  30°C); 
then it is compressed isothermally until its pressure is 10 bar. 

The gas is first heated at constant pressure until its temperature is 403.15 K (130°C); 
then it is compressed isothermally to 10 bar. 

The gas is first compressed isothermally to 10 bar; then it is heated at constant 
pressure to 403.15 K (130°C). 

Calculate Q, W,  A U ,  and A H  in each case. Take C p  = (7 /2 )R  and Cv = (5 /2 )R .  
Alternatively, take C p  = (5 /2 )R  and Cv = (312)R. 

3.23. One kmol of an ideal gas, initially at 303.15 K (30°C) and 1 bar, undergoes the following 
mechanically reversible changes. It is compressed isothermally to a point such that when 
it is heated at constant volume to 393.15 K (120°C) its final pressure is 12 bar. Calculate 
Q ,  W ,  A U ,  and A H  for the process. Take C p  = (712)R and Cv = (512)R. 

3.24. A process consists of two steps: ( I )  One kmol of air at T = 800 K and P = 4 bar is 
cooled at constant volume to T = 350 K. (2 )  The air is then heated at constant pressure 
until its temperature reaches 800 K. If this two-step process is replaced by a single 
isothermal expansion of the air from 800 K and 4 bar to some final pressure P, what is 
the value of P that makes the work of the two processes the same? Assume mechanical 
reversibility and treat air as an ideal gas with C p  = (7 /2 )R  and Cv = (5/2)R.  

3.25. A scheme for finding the internal volume V j  of a gas cylinder consists of the following 
steps. The cylinder is filled with a gas to a low pressure P I ,  and connected through a 
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small line and valve to an evacuated reference tank of known volume V i .  The valve is 
opened, and gas flows through the line into the reference tank. After the system returns 
to its initial temperature, a sensitive pressure transducer provides a value for the pressure 
change A P in the cylinder. Determine the cylinder volume Vi from the following data: 

3.26. A closed, nonconducting, horizontal cylinder is fitted with a nonconducting, frictionless, 
floating piston which divides the cylinder into Sections A and B. The two sections 
contain equal masses of air, initially at the same conditions, TI = 300 K and PI = 1 
atm. An electrical heating element in Section A is activated, and the air temperatures 
slowly increase: TA in Section A because of heat transfer, and TB in Section B because 
of adiabatic compression by the slowly moving piston. Treat air as an ideal gas with 
C p  = 5 R ,  and let n~ be the number of moles of air in Section A. For the process as 
described, evaluate one of the following sets of quantities: 

(a) TA, TB, and Q/nA, if P(fina1) = 1.25 atm. 
(b) TB, Q/nA, and P(final), if TA = 425 K. 
(c) TA, Q/nA, and P(final), if TB = 325 K. 
(d) TA, TB, and P(final), if Q/nA = 3 kT mol-' . 

3.27. One mole of an ideal gas with constant heat capacities undergoes an arbitrary mechan- 
ically reversible process. Show that: 

3.28. Derive an equation for the work of mechanically reversible, isothermal compression of 
1 mol of a gas from an initial pressure PI to a final pressure P2 when the equation of 
state is the virial expansion [Eq. (3.1 I)] truncated to: 

How does the result compare with the corresponding equation for an ideal gas? 

3.29. A certain gas is described by the equation of state: 

Here, b is a constant and 6 is a function of T only. For this gas, determine expressions 
for the isothermal compressibility K and the thermal pressure coefficient (3 P I 3  T)". 
These expressions should contain only T, P ,  6 ,  d6/dT, and constants. 

3.30. For methyl chloride at 373.15 K (100°C) the second and third virial coefficients are: 

Calculate the work of mechanically reversible, isothermal compression of 1 mol of 
methyl chloride from 1 bar to 55 bar at 373.15 K (100°C). Base calculations on the 
following forms of the virial equation: 
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(b) Z = 1 + B'P + C ' P ~  

where 

Why don't both equations give exactly the same result? 

3.31. Any equation of state valid for gases in the zero-pessure limit implies a full set of virial 
coefficients. Show that the second and third virial coefficients implied by the generic 
cubic equation of state, Eq. (3.41), are: 

Specialize the result for B to the RedlichIKwong equation of state, express it in reduced 
form, and compare it numerically with the generalized correlation for B for simple 
fluids, Eq. (3.61). Discuss what you find. 

3.32. Calculate Z and V for ethylene at 298.15 K (25°C) and 12 bar by the following equations: 
(a) The truncated virial equation [Eq. (3.39)] with the following experimental values 

of virial coefficients: 

(b) The truncated virial equation [Eq. (3.37)], with a value of B from the generalized 
Pitzer correlation [Eq. (3.59)]. 

(c)  The RedlicWKwong equation. 
(d) The Soave/Redlich/Kwong equation. 
(e) The PengJRobinson equation. 

3.33. Calculate Z and V for ethane at 323.15 K (50°C) and 15 bar by the following equations: 
(a) The truncated virial equation [Eq. (3.39)] with the following experimental values 

of virial coefficients: 

(b) The truncated virial equation [Eq. (3.37)], with a value of B from the generalized 
Pitzer correlation [Eq. (3.59)]. 

(c) The RedlichJKwong equation. 
(d) The Soave/RedlicWKwong equation. 
(e) The PengIRobinson equation. 

3.34. Calculate Z and V for sulfur hexafluoride at 348.15 K (75°C) and 15 bar by the following 
equations: 
(a) The truncated virial equation [Eq. (3.39)] with the following experimental values 

of virial coefficients: 
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(b) The truncated virial equation [Eq. (3.37)], with a value of B from the generalized 
Pitzer correlation [Eq. (3.59)]. 

(c)  The RedlicWKwong equation. 
(d) The SoaveRedlicWKwong equation. 
(e) The PengRobinson equation. 
For sulfur hexafluoride, Tc = 318.7 K, PC = 37.6 bar, V, = 198 cm3 mol-l, and 
w = 0.286. 

3.35. Determine Z and V for steam at 523.15 K (250°C) and 1800 kPa by the following: 
(a) The truncated virial equation [Eq. (3.39)] with the following experimental values 

of virial coefficients: 

(b) The truncated virial equation [Eq. (3.37)], with a value of B from the generalized 
Pitzer correlation [Eq. (3.59)]. 

(c) The steam tables (App. F). 

3.36. With respect to the virial expansions, Eqs. (3.1 1) and (3.12), show that: 

where p = 1/ V. 

3.37. Equation (3.12) when truncated to four terms accurately represents the volumetric data 
for methane gas at 273.15 K (PC)  with: 

(a) Use these data to prepare a plot of Z vs. P for methane at 273.15K (0°C) from 0 to 
200 bar. 

(b) To what pressures do Eqs. (3.37) and (3.38) provide good approximations? 

3.38. Calculate the molar volume of saturated liquid and the molar volume of saturated vapor 
by the RedlichIKwong equation for one of the following and compare results with values 
found by suitable generalized correlations. 

(a) Propane at 313.15 K(40°C) where PSat = 13.71 bar. 
(b) Propane at 323.15 K(50°C) where PSat = 17.16 bar. 

(c) Propane at 333.15 K(60°C) where Psat = 21.22 bar. 
(4 Propane at 343.15 K(70°C) where PSat = 25.94 bar. 
(e) n-Butane at 373.15 K(10OoC) where PSat = 15.41 bar. 
(f) n-Butane at 383.15 K(1lOcC) where PSat = 18.66 bar. 
(g) n-Butane at 393.15 K(120°C) where PSat = 22.38 bar. 
(h) n-Butane at 403.15 K(130°C) where PSat = 26.59bar. 
(i) Isobutane at 363.15 K(90°C) where PSat = 16.54bar. 
0) Isobutane at 373.15 K(10OoC) where PSat = 20.03 bar. 



Problems 113 

(k) Isobutane at 383.15 K(11O"C) where PSat = 24.01 bar. 
(I) Isobutane at 393.15 K(120°C) where PSat = 28.53 bar. 

(m) Chlorine at 333.15 K(60°C) where PSat = 18.21 bar. 
(n) Chlorine at 343.15 K(70°C) where PSat = 22.49 bar. 
(0) Chlorine at 353.15 K(80°C) where PSat = 27.43 bar. 
(p) Chlorine at 363.15 K(90°C) where PSat = 33.08 bar. 

(q) Sulfur dioxide at 353.15 K(80°C) where PSat = 18.66 bar. 

(r) Sulfur dioxide at 363.15 K(90"C) where PSat = 23.31 bar. 
(s) Sulfur dioxide at 373.15 K(lOO°C) where PSat = 28.74bar. 

( t )  Sulfur dioxide at 383.15 K(llO°C) where PSat = 35.01 bar. 

3.39. Use the Soave/Redlich/Kwong equation to calculate the molar volumes of saturated 
liquid and saturated vapor for the substance and conditions given by one of the parts of 
Pb. 3.38 and compare results with values found by suitable generalized correlations. 

3.40. Use the PengRobinson equation to calculate the molar volumes of saturated liquid and 
saturated vapor for the substance and conditions given by one of the parts of Pb. 3.38 
and compare results with values found by suitable generalized correlations. 

3.41. Estimate the following: 
(a) The volume occupied by 18 kg of ethylene at 328.15 K (55°C) and 35 bar. 
(b) The mass of ethylene contained in a 0.25-m3 cylinder at 323.15 K (50°C) and 115 

bar. 

3.42. The vapor-phase molar volume of a particular compound is reported as 23 000 cm3 mol-' 
at 300 K and 1 bar. No other data are available. Without assuming ideal-gas behavior, 
determine a reasonable estimate of the molar volume of the vapor at 300 K and 5 bar. 

3.43. To a good approximation, what is the molar volume of ethanol vapor at 753.15 K (480°C) 
and 6000 kPa? How does this result compare with the ideal-gas value? 

3.44. A 0.35-m3 vessel is used to store liquid propane at its vapor pressure. Safety consider- 
ations dictate that at a temperature of 320 K the liquid must occupy no more than 80% 
of the total volume of the vessel. For these conditions, determine the mass of vapor and 
the mass of liquid in the vessel. At 320 K the vapor pressure of propane is 16.0 bar. 

3.45. A 30-m3 tank contains 14 m3 of liquid n-butane in equilibrium with its vapor at 298.15 K 
(25°C). Estimate the mass of n-butane vapor in the tank. The vapor pressure of n-butane 
at the given temperature is 2.43 bar. 

3.46. Estimate: 
(a) The mass of ethane contained in a 0.15-m3 vessel at 333.15 K (60°C) and 14 bar. 
(b) The temperature at which 40 kg of ethane stored in a 0. 15-m3 vessel exerts a pressure 

20 bar. 

3.47. To what pressure does one fill a 0.15-m3 vessel at 298.15 K (25°C) in order to store 
40 kg of ethylene in it? 
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3.48. If 15 kg of H 2 0  in a 0.4-m3 container is heated to 673.15 K (400°C), what pressure is 
developed? 

3.49. A 0.35-m3 vessel holds ethane vapor at 298.15 K (25°C) and 2200 kPa. If it is heated 
to 493.15 K (220°C), what pressure is developed? 

3.50. What is the pressure in a 0.5-m3 vessel when it is charged with 10 kg of carbon dioxide 
at 303.15 K (30°C)? 

3.51. A rigid vessel, filled to one-half its volume with liquid nitrogen at its normal boiling 
point, is allowed to warm to 298.15 K (25°C). What pressure is developed? The molar 
volume of liquid nitrogen at its normal boiling point is 34.7 cm3 mol-'. 

3.52. The specific volume of isobutane liquid at 300 K and 4 bar is 1.824 cm3 g l .  Estimate 
the specific volume at 415 K and 75 bar. 

3.53. The density of liquid n-pentane is 0.630 g cmP3 at 29 1.15 K (1 8°C) and 1 bar. Estimate 
its density at 413.15 K (140°C) and 120 bar. 

3.54. Estimate the density of liquid ethanol at 453.15 K (180°C) and 200 bar. 

3.55. Estimate the volume change of vaporization for ammonia at 293.15 K (20°C). At this 
temperature the vapor pressure of ammonia is 857 kPa. 

3.56. PVT data may be taken by the following procedure. A mass rn of a substance of molar 
mass M is introduced into a thermostated vessel of known total volume V t .  The system 
is allowed to equilibrate, and the temperature T and pressure P are measured. 

(a )  Approximately what percentage errors are allowable in the measured variables (m, 
M ,  V f ,  T and P )  if the maximum allowable error in the calculated compressibility 
factor Z is f l%? 

(b) Approximately what percentage errors are allowable in the measured variables if 
the maximum allowable error in calculated values of the second virial coefficient B 
is f l%? Assume that Z E 0.9 and that values of B are calculated by Eq. (3.32). 

3.57. For a gas described by the RedlichIKwong equation and for a temperature greater than 
T,, develop expressions for the two limiting slopes, 

Note that in the limit as P -+ 0, V + oo, and that in the limit as P -+ oo, V -+ b. 

3.58. If 3.965m3 of methane gas at 288.75 K(15.6"C) and 1 atm is equivalent to 3.785 x 
lop3 m3 of gasoline as fuel for an automobile engine, what would be volume of the tank 
required to hold methane at 207 bar and 288.75 K(15.6"C) in an amount equivalent to 
37.85 x m3 of gasoline? 

3.59. Determine a good estimate for the compressibility factor Z of saturated hydrogen vapor 
at 25 K and 3.213 bar. For comparison, an experimental value is Z = 0.7757. 
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3.60. The Boyle temperature is the temperature for which: 

(a) Show that the second virial coefficient B is zero at the Boyle temperature. 
(b) Use the generalized correlation for B, Eq. (3.59), to estimate the reduced Boyle 

temperature for simple fluids. 

3.61. Natural gas (assume pure methane) is delivered to a city via pipeline at a volumetric rate 
of 4 normal ~ r n ~  per day. Average delivery conditions are 283.15 K (10°C) and 20.7 
bar. Determine: 
(a) The volumetric delivery rate in actual m3 per day. 
(b) The molar delivery rate in krnol per hour. 
(c) The gas velocity at delivery conditions in m s-'. 
The pipe is 600 mm heavy duty steel with an inside diameter of 575 mm. Normal 
conditions are 273.15 K (PC) and 1 atm. 

3.62. Some corresponding-states correlations use the critical compressibility factor Z,, rather 
than the acentric factor w, as a third parameter. The two types of correlation (one based 
on T,, PC, and Z,, the other on T,, PC, and w )  would be equivalent were there a one- 
to-one correspondence between Z, and w. The data of App. B allow a test of this 
correspondence. Prepare a plot of Z, vs. w to see how well Z, correlates with w. Develop 
a linear correlation (Z, = a + bw) for nonpolar substances. 


