

UNIVERSITY OF TECHNOLOGY, JAMAICA

FACULTY OF SCIENCE AND SPORT

SCHOOL OF MATHEMATICS AND STATISTICS

Final Examination, Semester 1

Module Name:

Engineering Mathematics 3

Module Code:

MAT 2034

Date:

December 2011

THRARY COPY

Theory / Practical:

Theory

Groups:

Eng 2(Electrical / Mechanical)

Duration:

Two (2) hours

Instructions:

 This question paper consists of four (4) printed pages, which includes a cover page, five (5) questions and a formulae sheet.

- 2. You are required to ANSWER ANY FOUR (4) questions in the answer booklet provided.
- 3. Full marks will be awarded for full workings / explanations.
- 4. The use of silent electronic calculators is permitted.
- 5. Begin the answer to each question on a fresh page and number your solutions carefully.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

QUESTION 1

- a) Differentiate the following, with respect to x:
 - (i) $y = 4 \tan^{-1} \left(\sqrt{3x + 1} \right)$
 - (ii) $y = \log_{\sin 3x} \left(2x^2 + 1\right)$
 - (iii) $y = \cos^5(e^{3x})$

[3+4+3 marks]

b) If $z = \frac{8b^5c^2}{\sqrt{d}}$, find the percentage change in z if c is increased by 1.5% and

b and d are decreased by 2% and 3%, respectively.

[5 marks]

QUESTION 2

a) Given the curve $3x^2 \ln(y+1) + 3y - 4e^{\sin x} = 7$, deduce an expression for $\frac{dy}{dx}$.

[6 marks]

- b) Given the parametric equations: $y = 3\cos\theta \cos^3\theta$, $x = 3\sin\theta \sin^3\theta$
 - (i) Show that $\frac{dy}{dx} = -\tan^3 \theta$
 - (ii) Derive an expression for $\frac{d^2y}{dx^2}$

[5+4 marks]

QUESTION 3

a) Find the stationary points of the function $z = x^3 - 6xy + y^3$.

Classify each stationary point.

[6+4 marks]

b) Find the following integrals:

(i)
$$\int \left[2x^{-2} + \frac{5}{\sqrt[3]{x^7}}\right] dx$$

(ii)
$$\int \left[7\sin\left(\frac{3x}{5}\right) + 4e^{7-6x} - \frac{12}{x}\right] dx$$

[2+3 marks]

QUESTION 4

a) Using logarithmic differentiation, find $\frac{dy}{dx}$, given

$$y = \frac{\sqrt[5]{(x^7 - 2x + 1)}}{e^{4x} \sec(3x)}$$

[6 marks]

- b) Given $Z = e^{2x} \cos y x^2 \ln y$, find expressions for:
 - (i) $\frac{\partial^2 Z}{\partial r^2}$
 - (ii) $\frac{\partial^2 Z}{\partial y \partial x}$
 - (iii) $\frac{\partial^2 Z}{\partial y^2}$

[3+3+3 marks]

QUESTION 5

a) Find the following integrals:

(ii)
$$\int \left[5\sin^7 x \cos x - \frac{4x}{5x^2 - 6} \right] dx$$

(iii)
$$\int \left[3\sin\left(\frac{3x}{5}\right) + 5x^2 e^{x^3} - \frac{2}{1+x^2} \right] dx$$

[4+4+3 marks]

$$\int_{0}^{\frac{\pi}{3}} \left[\frac{\sin 3\theta}{4 + 2\cos 3\theta} \right] d\theta$$

[4 marks]

END OF EXAM

USEFUL FORMULAE

$$\ln(xy) = \ln x + \ln y$$

$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y$$

$$\ln x^n = n \ln x$$

$$\log_a b = \frac{\ln b}{\ln a}$$

$$\frac{d}{dx}(ax^n) = nax^{n-1}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(uv) = u'v + uv'$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^2}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{d}{d}\left(e^{f(x)}\right) = f'(x)e^{f(x)}$$

$$\frac{d}{dx} \left(e^{f(x)} \right) = f'(x) e^{f(x)}$$
$$\frac{d}{dx} \left(\ln f(x) \right) = \frac{f'(x)}{f(x)}$$

$$\frac{d}{dx} \Big[(f(x))^n \Big] = n \Big[f(x) \Big]_{\cdot}^{n-1} \times f'(x)$$

$$\frac{d}{dx}[f(g(x))] = g'(x)f'(g(x))$$