

UNIVERSITY OF TECHNOLOGY, JAMAICA

SCHOOL OF ENGINEERING

FINAL EXAMINATION (SEMESTER 1)

GROUP: ENG 2

DATE: DECEMBER 2006

SUBJECT: MATHEMATICS 3 (MAT 2034)

DURATION: 2 HOURS

INSTRUCTIONS: This paper consists of five questions presented on 3 pages. Answer any four (4) questions. Show all working clearly.

[93 represents the set of real numbers.]

QUESTION#1

If Z = x Cos(xy), show that: (a)

(i)
$$x \frac{\partial Z}{\partial x} - y \frac{\partial Z}{\partial y} - Z = 0$$

(ii)
$$x \frac{\partial^2 Z}{\partial x \partial y} = 2 \frac{\partial Z}{\partial y} - (x^2 y).Z$$

[6+3 marks]

(b) The deflection y at the centre of a circular plate suspended at the edge and uniformly loaded is given by $y = \frac{kwd^4}{t^3}$, where w = total load, d = diameter of plate, t = thicknessand k is a constant. Calculate the approximate percentage change in y if both w and t increase by 2% and 1% respectively, and d decreases by 1.5%.

[Use partial differentiation.]

[6 marks]

QUESTION #2

Find the two stationary points of the function: $Z = 4x^2 + 2y^2 - 8xy + 2x^3$. (a) For each critical point, determine by the second partial derivative test, whether it corresponds to a relative maximum, relative minimum or saddle point.

[10 marks]

QUES.#2 CONTINUED .

QUESTION #2 Continued

(b) Given that
$$R = \frac{e^{\left(\frac{4x}{7}\right)}Sin^3\left(5x\right)}{\ln x \cdot \sqrt{\left(5x^2 - x\right)^9}}$$
, find $\frac{dR}{dx}$.

[Use logarithmic differentiation or otherwise]

[5 marks]

QUESTION#3

Differentiate the following with respect to x, simplifying your answers as far as possible:

(i)
$$\log_{1-x}(5x-2)$$

[5 marks]

(ii)
$$Sin(e^{(x in x)})$$

[5 marks]

(iii)
$$Sec^{-1}(4x^8)$$

[5 marks]

QUESTION #4

(a) Find the following integrals, simplifying your answers:

(i)
$$\int \left[\left(x^2 - \frac{1}{3x} \right)^2 - Cos \left(\frac{4 - 9x}{3} \right) + \frac{7}{2\sqrt[7]{e^{8x}}} \right] dx$$

[5 marks]

(ii)
$$\int 5x(6x^2+1)^{10} + \frac{5x}{6x^2+1} - \frac{5}{6\sqrt{x}} dx$$

[4 marks]

(b) Find the gradient at the point (0,1) on the curve:

$$x^{2} \ln(5y) - y^{3}e^{2x} + Sin(x^{2}) + 1 = 0$$

[6 marks]

QUESTION #5

(a) Evaluate $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point where $\theta = \pi$

$$x = Cos\theta + Sin\theta$$
, $y = Sin\theta - Cos\theta$

[7 marks]

QUESTION #5 Continued

(a) Evaluate the following integrals:

(i)
$$\int_{0}^{\pi} \left[\frac{Cos\left(\frac{x}{2}\right)}{1 + 4Sin\left(\frac{x}{2}\right)} \right] dx$$
 [4 marks]

(ii)
$$\int_{1}^{3} \left(\frac{6x^4 - 3x^2 + 2x}{3x^3} \right) dx$$
 [4 marks]

*******END OF EXAM******

USEFUL FORMULAE

$$Sin^{2}A + Cos^{2}A = 1$$

$$Tan^{2}A + 1 = Sec^{2}A$$

$$Cot^{2}A + 1 = Cosec^{2}A$$

$$\frac{d}{dx}Sec(x) = Sec(x)Tan(x)$$

$$\frac{d}{dx}Cosec(x) = -Cosec(x)Cot(x)$$

$$0$$
 $\left(\frac{\cos\left(\frac{x}{2}\right)}{1 + i\sin\left(\frac{x}{2}\right)}\right)$ in

$$\sin\left(\frac{\pi L + 2\pi L + 2\pi}{L_{\text{eff}}}\right)^{-1}$$
(6)

.

tehon/Pl

AND DESCRIPTION OF PARTICIPATIONS AND DESCRIPTIONS AND DESCRIPTIONS OF PERSONS AND DESCRIPTIONS AND DESCR

REAL PROPERTY AND ADDRESS.

HARMON AND STREET

English at Mark

at benefit in the first to

$$\sup_{n \in \mathbb{N}} \operatorname{Sup}(-1) = \operatorname{Sup}(n) \prod_{n \in \mathbb{N}} \operatorname{Sup}(n)$$

$$(x) = \lambda(x) = x(x) - x(x) = x(x) \frac{\lambda_1}{\lambda_2}$$